Characterization of the Robust Isolated Calmness for a Class of Conic Programming Problems

Chao Ding
SIAM OP17, Vancouver, May 22, 2017

Institute of Applied Mathematics, Academy of Mathematics and Systems Science
Chinese Academy of Sciences
This is a joint work with Defeng Sun at National University of Singapore and Liwei Zhang at Dalian University of Technology.

Optimization problem

\[
\begin{align*}
\min \quad & f(x) \\
\text{s.t.} \quad & G(x) \in \mathcal{K}
\end{align*}
\]
Optimization problem

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad G(x) \in \mathcal{K}
\end{align*}
\]

- \(f : \mathcal{X} \rightarrow \mathbb{R} \) and \(G : \mathcal{X} \rightarrow \mathcal{Y} \) are twice continuously differentiable functions.
Optimization problem

\[\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad G(x) \in \mathcal{K}
\end{align*} \]

- $f : \mathcal{X} \to \mathbb{R}$ and $G : \mathcal{X} \to \mathcal{Y}$ are twice continuously differentiable functions
- \mathcal{X}, \mathcal{Y} are two finite dimensional real Euclidean spaces each equipped with an inner product $\langle \cdot, \cdot \rangle$ and its induced norm $\| \cdot \|$
Optimization problem

\[
\begin{align*}
\min & \quad f(x) \\
\text{s.t.} & \quad G(x) \in \mathcal{K}
\end{align*}
\]

- \(f : \mathcal{X} \to \mathbb{R} \) and \(G : \mathcal{X} \to \mathcal{Y} \) are twice continuously differentiable functions
- \(\mathcal{X}, \mathcal{Y} \) are two finite dimensional real Euclidean spaces each equipped with an inner product \(\langle \cdot, \cdot \rangle \) and its induced norm \(\| \cdot \| \)
- \(\mathcal{K} \subseteq \mathcal{Y} \) is a nonempty closed convex set, e.g., \(\mathbb{R}_+^n, \mathbb{S}^n_+ \), Second-Order-Cone, ...
Optimization problem

\[
\min \ f(x) \\
\text{s.t.} \ G(x) \in \mathcal{K}
\]

- \(f : \mathcal{X} \rightarrow \mathbb{R} \) and \(G : \mathcal{X} \rightarrow \mathcal{Y} \) are twice continuously differentiable functions
- \(\mathcal{X}, \mathcal{Y} \) are two finite dimensional real Euclidean spaces each equipped with an inner product \(\langle \cdot, \cdot \rangle \) and its induced norm \(\| \cdot \| \)
- \(\mathcal{K} \subset \mathcal{Y} \) is a nonempty closed convex set, e.g., \(\mathbb{R}^n_+ \), \(S^n_+ \), Second-Order-Cone, ...

This is a very broad framework including many important problems: LP, NLP, SDP, NLSDP, MOP, ...
Canonically perturbed optimization problem:

\[
\begin{align*}
\min & \quad f(x) - \langle a, x \rangle \\
\text{s.t.} & \quad G(x) + b \in \mathcal{K}
\end{align*}
\]
Perturbed optimization problem

Canonically perturbed optimization problem:

\[
\min f(x) - \langle a, x \rangle \\
s.t. \quad G(x) + b \in \mathcal{K}
\]

The Lagrangian function \(L : \mathcal{X} \times \mathcal{Y} \rightarrow \mathbb{R} \) is defined by

\[
L(x; y) := f(x) + \langle y, G(x) \rangle, \quad (x, y) \in \mathcal{X} \times \mathcal{Y}
\]
Perturbed optimization problem

Canonically perturbed optimization problem:

$$\begin{align*}
\min & \quad f(x) - \langle a, x \rangle \\
\text{s.t.} & \quad G(x) + b \in \mathcal{K}
\end{align*}$$

The **Lagrangian function** $L : \mathcal{X} \times \mathcal{Y} \to \mathbb{R}$ is defined by

$$L(x; y) := f(x) + \langle y, G(x) \rangle, \quad (x, y) \in \mathcal{X} \times \mathcal{Y}$$

The **Karush-Kuhn-Tucker (KKT)** optimality condition for perturbed problem takes the following form:

$$\begin{align*}
\begin{cases}
 a = \nabla_x L(x; y), \\
 b \in -G(x) + \partial \sigma(y, \mathcal{K})
\end{cases}
\end{align*} \iff \begin{align*}
\begin{cases}
 a = \nabla_x L(x; y), \\
 y \in \mathcal{N}_\mathcal{K}(G(x) + b)
\end{cases}
\end{align*}$$
Perturbed optimization problem

Canonically perturbed optimization problem:

\[
\begin{align*}
\min & \quad f(x) - \langle a, x \rangle \\
\text{s.t.} & \quad G(x) + b \in \mathcal{K}
\end{align*}
\]

The **Lagrangian function** \(L : \mathcal{X} \times \mathcal{Y} \to \mathbb{R} \) is defined by

\[
L(x; y) := f(x) + \langle y, G(x) \rangle, \quad (x, y) \in \mathcal{X} \times \mathcal{Y}
\]

The **Karush-Kuhn-Tucker** (KKT) optimality condition for perturbed problem takes the following form:

\[
\begin{align*}
\begin{cases}
 a = \nabla_x L(x; y), \\
 b \in -G(x) + \partial \sigma(y, \mathcal{K})
\end{cases}
\end{align*} \quad \iff \quad \begin{align*}
\begin{cases}
 a = \nabla_x L(x; y), \\
 y \in \mathcal{N}_\mathcal{K}(G(x) + b)
\end{cases}
\end{align*}
\]

GE:

\[(a, b) \in \mathcal{T}_L(x, y)\]
For each given perturbation parameter \((a, b) \in \mathcal{X} \times \mathcal{Y}\),
For each given perturbation parameter \((a, b) \in \mathcal{X} \times \mathcal{Y}\),

- \(X(a, b)\): the set of all locally optimal solutions
For each given perturbation parameter \((a, b) \in \mathcal{X} \times \mathcal{Y}\),

- \(X(a, b)\): the set of all locally optimal solutions
- \(x \in X(a, b)\) is said to be isolated if there exists an open neighborhood \(\mathcal{V}\) of \(x\) such that \(X(a, b) \cap \mathcal{V} = \{x\}\)
For each given perturbation parameter \((a, b) \in \mathcal{X} \times \mathcal{Y}\),

- \(X(a, b)\): the set of all locally optimal solutions
- \(x \in X(a, b)\) is said to be isolated if there exists an open neighborhood \(\mathcal{V}\) of \(x\) such that \(X(a, b) \cap \mathcal{V} = \{x\}\)
- \(S_{\text{KKT}}(a, b)\): the set of all solutions \((x, y)\) to the KKT system
For each given perturbation parameter \((a, b) \in \mathcal{X} \times \mathcal{Y}\),

- \(X(a, b)\): the set of all locally optimal solutions
- \(x \in X(a, b)\) is said to be **isolated** if there exists an open neighborhood \(\mathcal{V}\) of \(x\) such that \(X(a, b) \cap \mathcal{V} = \{x\}\)
- \(S_{KKT}(a, b)\): the set of all solutions \((x, y)\) to the KKT system
- \(X_{KKT}(a, b)\): the set of all **stationary points**, i.e.,

\[
\{x \in \mathcal{X} \mid \exists y \in \mathcal{Y} \text{ s.t. the KKT system holds at } (x, y)\}
\]
For each given perturbation parameter \((a, b) \in \mathcal{X} \times \mathcal{Y}\),

- \(X(a, b)\): the set of all locally optimal solutions
- \(x \in X(a, b)\) is said to be **isolated** if there exists an open neighborhood \(\mathcal{V}\) of \(x\) such that \(X(a, b) \cap \mathcal{V} = \{x\}\)
- \(S_{\text{KKT}}(a, b)\): the set of all solutions \((x, y)\) to the KKT system
- \(X_{\text{KKT}}(a, b)\): the set of all **stationary points**, i.e.,
 \[
 \{x \in \mathcal{X} \mid \exists y \in \mathcal{Y} \text{ s.t. the KKT system holds at } (x, y)\}
 \]
- \(M(x, a, b)\): the set of **Lagrange multipliers** associated with \((x, a, b)\), i.e.,
 \[
 \{y \in \mathcal{Y} \mid (x, y) \in S_{\text{KKT}}(a, b)\}\]
Let Ψ be a set-valued mapping with $(\bar{p}, \bar{q}) \in \text{gph} \, \Psi$. Lipschitz-like properties:
Let Ψ be a set-valued mapping with $(\bar{p}, \bar{q}) \in \text{gph} \, \Psi$. Lipschitz-like properties:

- calmness (Robinson’s upper Lipschitzian)
Let Ψ be a set-valued mapping with $(\bar{p}, \bar{q}) \in \text{gph} \, \Psi$. Lipschitz-like properties:

- calmness (Robinson’s upper Lipschitzian)
- (robust) isolated calmness
Let Ψ be a set-valued mapping with $(\bar{p}, \bar{q}) \in \text{gph } \Psi$. Lipschitz-like properties:

- calmness (Robinson’s upper Lipschitzian)
- (robust) isolated calmness
- Aubin property
Calmness (Robinson’s upper Lipschitzian)

Definition

The set-valued mapping Ψ is said to be calm at \bar{p} if there exist a constant $\kappa > 0$ and an open neighborhood \mathcal{U} of \bar{p} such that

$$
\Psi(p) \subset \Psi(\bar{p}) + \kappa \| p - \bar{p} \| \mathbb{B} \quad \forall \, p \in \mathcal{U}.
$$
Calmness (Robinson’s upper Lipschitzian)

Definition

The set-valued mapping Ψ is said to be calm at \bar{p} if there exist a constant $\kappa > 0$ and an open neighborhood \mathcal{U} of \bar{p} such that

$$\Psi(p) \subset \Psi(\bar{p}) + \kappa \|p - \bar{p}\|_B \quad \forall \ p \in \mathcal{U}.$$

- It was called “upper Lipschitzian” by Robinson (1979)1.

(Robust) Isolated calmness

Definition

The set-valued mapping Ψ is said to be **isolated calm** at \bar{p} for \bar{q} if there exist a constant $\kappa > 0$ and open neighborhoods \mathcal{U} of \bar{p} and \mathcal{V} of \bar{q} such that

$$\Psi(p) \cap \mathcal{V} \subset \{\bar{q}\} + \kappa\|p - \bar{p}\|_B \quad \forall p \in \mathcal{U}. \quad (1)$$

Moreover, Ψ is said to be **robustly isolated calm** at \bar{p} for \bar{q} if (1) holds and for each $p \in \mathcal{U}$, $\Psi(p) \cap \mathcal{V} \neq \emptyset$.
• Isolated calmness: the "local upper Lipschitz continuity" Dontchev & Rockafellar (1997)\(^2\) and Levy (1996)\(^3\)

Isolated calmness: the “local upper Lipschitz continuity”
Dontchev & Rockafellar (1997)\(^2\) and Levy (1996)\(^3\)

In general, isolated calmness ≠ robust isolated calm

• **Isolated calmness**: the “local upper Lipschitz continuity” \cite{DontchevRockafellar1997} and \cite{Levy1996}

• In general, isolated calmness \(\not\Rightarrow\) robust isolated calm

 a counterexample: Example 6.4 in \cite{MordukhovichOutrataRamirez2015}

• In general, isolated calmness $\not\Rightarrow$ robust isolated calm

• **Robust isolated calm** = isolated calm + lower semi-continuous

Aubin property

Definition

The set-valued mapping Ψ has the **Aubin property** at \bar{p} for \bar{q} if there exist a constant $\kappa > 0$ and open neighborhoods \mathcal{U} of \bar{p} and \mathcal{V} of \bar{q} such that

$$\Psi(p) \cap \mathcal{V} \subset \Psi(p') + \kappa \| p - p' \|_{\mathbb{B}} \quad \forall \ p, p' \in \mathcal{U}.$$
Aubin property

<table>
<thead>
<tr>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>The set-valued mapping Ψ has the Aubin property at \bar{p} for \bar{q} if there exist a constant $\kappa > 0$ and open neighborhoods \mathcal{U} of \bar{p} and \mathcal{V} of \bar{q} such that</td>
</tr>
<tr>
<td>$\Psi(p) \cap \mathcal{V} \subset \Psi(p') + \kappa |p - p'|_B \quad \forall p, p' \in \mathcal{U}$.</td>
</tr>
</tbody>
</table>

- It was designated "**pseudo-Lipschitzian**" by **Aubin** (1984)

Definition

The set-valued mapping Ψ has the Aubin property at \bar{p} for \bar{q} if there exist a constant $\kappa > 0$ and open neighborhoods \mathcal{U} of \bar{p} and \mathcal{V} of \bar{q} such that

$$\Psi(p) \cap \mathcal{V} \subset \Psi(p') + \kappa \| p - p' \| \mathbb{B} \quad \forall p, p' \in \mathcal{U}.$$

- It was designated “pseudo-Lipschitzian” by Aubin (1984)5.
- Aubin property + “single-valuedness” = Robinson’s strong regularity6

Characterize the robust isolated calmness of S_{KKT} for a class of non-polyhedral conic programming problems.
Why is it important?

A possible answer: It is related to the convergence analysis of numerical algorithms for solving OPs.
A possible answer: It is related to the convergence analysis of numerical algorithms for solving OPs.
Proximal point algorithm (PPA)

\(\mathcal{T} \): a maximal monotone operator from \(\mathcal{X} \) to \(\mathcal{X} \)

Solve the following inclusion problem

\[0 \in \mathcal{T}(z) \]

Given \(c > 0 \), the proximal mapping associated with \(c \mathcal{T} \):

\[P := (I + c \mathcal{T})^{-1} \]

The proximal point algorithm (PPA):

\[z_{k+1} \approx P_k(z_k) \]

Criteria for approximate calculation of \(P_k(z_k) \):

\[(A): \| z_{k+1} - P_k(z_k) \| \leq \delta_k \| z_{k+1} - z_k \|, \quad \infty \sum_{k=0}^\infty \delta_k < \infty \]
Proximal point algorithm (PPA)

\mathcal{T}: a maximal monotone operator from \mathcal{X} to \mathcal{X}

Solve the following inclusion problem $0 \in \mathcal{T}(z)$
Proximal point algorithm (PPA)

\(\mathcal{T} \): a maximal monotone operator from \(\mathcal{X} \) to \(\mathcal{X} \)

Solve the following inclusion problem \(0 \in \mathcal{T}(z) \)

Given \(c > 0 \), the proximal mapping associated with \(c\mathcal{T} \):

\[
P := (I + c\mathcal{T})^{-1}
\]

The proximal point algorithm (PPA):

\[z^{k+1} \approx P_k(z^k), \quad P_k := (I + c_k\mathcal{T})^{-1} \]
Proximal point algorithm (PPA)

\(\mathcal{T} \): a maximal monotone operator from \(\mathcal{X} \) to \(\mathcal{X} \)

Solve the following inclusion problem \(0 \in \mathcal{T}(z) \)

Given \(c > 0 \), the proximal mapping associated with \(c\mathcal{T} \):

\[
P := (I + c\mathcal{T})^{-1}
\]

The proximal point algorithm (PPA):

\[
z^{k+1} \approx P_k(z^k), \quad P_k := (I + c_k\mathcal{T})^{-1}
\]

Criteria for approximate calculation of \(P_k(z^k) \):

\[
(A) : \quad \|z^{k+1} - P_k(z^k)\| \leq \delta_k \|z^{k+1} - z^k\|, \quad \sum_{k=0}^{\infty} \delta_k < \infty
\]
Theorem (Rockafellar 19767)

Let z^k be generated by PPA using criterion (A) with c_k nondecreasing ($c_k \uparrow c_\infty \leq \infty$). Suppose that T^{-1} is \textit{robustly isolated calm} at 0 with modulus κ. Then,

- $z^k \to \bar{z}$ linearly with a rate bounded from above by
 \[
 \frac{\kappa}{\sqrt{\kappa^2 + c_\infty^2}} < 1 \quad \text{(fast linear)}
 \]

- If $c_\infty = \infty$, the convergence is \textit{superlinear}.

Outline

Background: the polyhedral case

Main results
Background: the polyhedral case
The polyhedral case

When the set \mathcal{K} is polyhedral, the theory is fairly complete: Robinson (1982)8, Dontchev & Rockafellar (1997), Klatte & Kummer (2002)9, etc.

The polyhedral case

When the set \(\mathcal{K} \) is polyhedral, the theory is fairly complete: Robinson (1982)\(^8\), Dontchev & Rockafellar (1997), Klatte & Kummer (2002)\(^9\), etc.

For example, for NLP:

- **Dontchev & Rockafellar (1997):** at a locally optimal solution,

\[
S_{\text{KKT}} \text{ is robustly isolated calm } \iff \left\{ \begin{array}{c}
\text{strict MFCQ} \\
\text{second order sufficient condition}
\end{array} \right.
\]

The polyhedral case

When the set \mathcal{K} is polyhedral, the theory is fairly complete: Robinson (1982)8, Dontchev & Rockafellar (1997), Klatte & Kummer (2002)9, etc.

For example, for NLP:

- **Dontchev & Rockafellar** (1997): at a locally optimal solution,

 $$S_{\text{KKT}} \text{ is robustly isolated calm } \iff \begin{cases} \text{strict MFCQ} \\ \text{second order sufficient condition} \end{cases}$$

Question:

The polyhedral case

When the set \mathcal{K} is polyhedral, the theory is fairly complete: Robinson (1982), Dontchev & Rockafellar (1997), Klatte & Kummer (2002), etc.

For example, for NLP:

- **Dontchev & Rockafellar** (1997): at a locally optimal solution,

$$S_{\text{KKT}} \text{ is robustly isolated calm} \iff \begin{cases} \text{strict MFCQ} \\ \text{second order sufficient condition} \end{cases}$$

Question:

What about the non-polyhedral case, e.g., $\mathcal{K} = S^n_+$?

An example

Example 4.54 in Bonnans & Shapiro (2000):\(^{10}\)

\[
\begin{align*}
\min & \quad x_1 + x_1^2 + x_2^2 \\
\text{s.t.} & \quad \text{Diag}(x) + \varepsilon A \in S^2_+
\end{align*}
\]

- \(x = (x_1, x_2) \in \mathbb{R}^2\), \(A\) is a non-diagonal matrix in \(S^2\), and \(\varepsilon\) is a scalar parameter.

An example

Example 4.54 in Bonnans & Shapiro (2000)10:

\[
\begin{align*}
\min & \quad x_1 + x_1^2 + x_2^2 \\
\text{s.t.} & \quad \text{Diag}(x) + \varepsilon A \in S_+^2
\end{align*}
\]

- $x = (x_1, x_2) \in \mathbb{R}^2$, A is a non-diagonal matrix in S^2, and ε is a scalar parameter.

- if $\varepsilon = 0$: a convex quadratic SDP problem with a strongly convex objective function and with the Slater condition being satisfied

Example 4.54 in Bonnans & Shapiro (2000)10:

\[
\begin{align*}
\min & \quad x_1 + x_1^2 + x_2^2 \\
\text{s.t.} & \quad \text{Diag}(x) + \varepsilon A \in S^2_+
\end{align*}
\]

- \(x = (x_1, x_2) \in \mathbb{R}^2 \), \(A \) is a non-diagonal matrix in \(S^2 \), and \(\varepsilon \) is a scalar parameter.
- if \(\varepsilon = 0 \): a convex quadratic SDP problem with a strongly convex objective function and with the Slater condition being satisfied
- the unique optimal solution \(\bar{x} = (0, 0) \) with the unique Lagrange multiplier \(\bar{Y} = \begin{bmatrix} -1 & 0 \\ 0 & 0 \end{bmatrix} \).

For any given $\varepsilon \geq 0$, the perturbed problem has a unique optimal solution
$X(\varepsilon) = (\bar{x}_1(\varepsilon), \bar{x}_2(\varepsilon))$ with $\bar{x}_2(\varepsilon)$ of order $\varepsilon^{2/3}$ as $\varepsilon \to 0$.
For any given $\varepsilon \geq 0$, the perturbed problem has a unique optimal solution $X(\varepsilon) = (\bar{x}_1(\varepsilon), \bar{x}_2(\varepsilon))$ with $\bar{x}_2(\varepsilon)$ of order $\varepsilon^{2/3}$ as $\varepsilon \to 0$.

S_{KKT} fails to be calm.
For any given \(\varepsilon \geq 0 \), the perturbed problem has a unique optimal solution
\(X(\varepsilon) = (\bar{x}_1(\varepsilon), \bar{x}_2(\varepsilon)) \) with \(\bar{x}_2(\varepsilon) \) of order \(\varepsilon^{2/3} \) as \(\varepsilon \to 0 \).

\(S_{KKT} \) fails to be calm.

- completely different from the polyhedral case Robinson (1982):

\[\text{MFCQ} + \text{one strong form of the SOSC} \implies \text{calmness} \]
For any given $\varepsilon \geq 0$, the perturbed problem has a unique optimal solution $X(\varepsilon) = (\bar{x}_1(\varepsilon), \bar{x}_2(\varepsilon))$ with $\bar{x}_2(\varepsilon)$ of order $\varepsilon^{2/3}$ as $\varepsilon \to 0$.

S_{KKT} fails to be calm.

- completely different from the polyhedral case Robinson (1982):

 $$\text{MFCQ} + \text{one strong form of the SOSC} \implies \text{calmness}$$

S_{KKT} fails to be robustly isolated calm.
For any given $\epsilon \geq 0$, the perturbed problem has a unique optimal solution $X(\epsilon) = (\bar{x}_1(\epsilon), \bar{x}_2(\epsilon))$ with $\bar{x}_2(\epsilon)$ of order $\epsilon^{2/3}$ as $\epsilon \to 0$.

S_{KKT} fails to be calm.

- completely different from the polyhedral case Robinson (1982):

 \[\text{MFCQ} + \text{one strong form of the SOSC} \implies \text{calmness} \]

S_{KKT} fails to be robustly isolated calm.

- completely different from the polyhedral case: since for NLP,

For any given $\varepsilon \geq 0$, the perturbed problem has a unique optimal solution $X(\varepsilon) = (\bar{x}_1(\varepsilon), \bar{x}_2(\varepsilon))$ with $\bar{x}_2(\varepsilon)$ of order $\varepsilon^{2/3}$ as $\varepsilon \to 0$.

S_{KKT} fails to be calm.

- completely different from the polyhedral case Robinson (1982):

 \[\text{MFCQ} + \text{one strong form of the SOSC} \implies \text{calmness} \]

S_{KKT} fails to be robustly isolated calm.

- completely different from the polyhedral case: since for NLP, strict MFCQ \iff the uniqueness of Lagrange multipliers Kyparisis (1985)\(^{11}\)

For any given $\varepsilon \geq 0$, the perturbed problem has a unique optimal solution $X(\varepsilon) = (\bar{x}_1(\varepsilon), \bar{x}_2(\varepsilon))$ with $\bar{x}_2(\varepsilon)$ of order $\varepsilon^{2/3}$ as $\varepsilon \to 0$.

S_{KKT} fails to be calm.

- completely different from the polyhedral case Robinson (1982):

 \[\text{MFCQ} + \text{one strong form of the SOSC} \implies \text{calmness}\]

S_{KKT} fails to be robustly isolated calm.

- completely different from the polyhedral case: since for NLP, strict MFCQ \iff the uniqueness of Lagrange multipliers Kyparisis (1985)11

Robust isolated calmness \iff \begin{align*}
\text{the uniqueness of Lagrange multipliers} & \\
\text{SOSC} &
\end{align*}

Metric projection operator Π_K:

$$\overline{A} := \Pi_K(C) := \arg\min \left\{ \frac{1}{2} \| Y - C \|^2 \mid Y \in K \right\}$$
Metric projection operator Π_K:

$$\bar{A} := \Pi_K(C) := \arg\min \left\{ \frac{1}{2} \| Y - C \|^2 \mid Y \in K \right\}$$

If K is a polyhedral closed convex set,
Polyhedral \implies non-polyhedral

Metric projection operator Π_K:

$$\overline{A} := \Pi_K(C) := \text{argmin} \left\{ \frac{1}{2} \| Y - C \|^2 \mid Y \in K \right\}$$

If K is a polyhedral closed convex set,

- Π_K is directional differentiable \textbf{Facchinei & Pang} (2003)12

$$\Pi_K(C + H) - \Pi_K(C) = \Pi_{C_K(C)}(H) =: \Pi'_K(C; H) \quad \forall \, H$$

Metric projection operator Π_K:

$$\overline{A} := \Pi_K(C) := \arg\min \left\{ \frac{1}{2}\|Y - C\|^2 \mid Y \in K \right\}$$

If K is a polyhedral closed convex set,

- Π_K is directional differentiable \textbf{Facchinei \& Pang} (2003)12

$$\Pi_K(C + H) - \Pi_K(C) = \Pi_{C_K(C)}(H) =: \Pi'_K(C; H) \quad \forall H$$

- $C_K(C)$ is the critical cone of K at C

If \mathcal{K} is a non-polyhedral closed convex set
If \mathcal{K} is a non-polyhedral closed convex set but C^2-cone reducible,

- $\Pi_{\mathcal{K}}$ is directional differentiable and $\Pi'_{\mathcal{K}}(C; H)$ is the unique optimal solution to Bonnans et al. (1998)13:

\[\min \left\{ \|D - H\|^2 - \sigma(B, T_{\mathcal{K}}^2(\overline{A}, D)) \mid D \in C_{\mathcal{K}}(C) \right\} \]

If \mathcal{K} is a non-polyhedral closed convex set but C^2-cone reducible,

- $\Pi_{\mathcal{K}}$ is directional differentiable and $\Pi'_{\mathcal{K}}(C; H)$ is the unique optimal solution to Bonnans et al. (1998)13:

$$\min \left\{ \|D - H\|^2 - \sigma(\overline{B}, T^2_{\mathcal{K}}(\overline{A}, D)) \mid D \in \mathcal{C}_\mathcal{K}(C) \right\}$$

- $\overline{B} := C - \overline{A}$ and $\sigma(\overline{B}, T^2_{\mathcal{K}}(\overline{A}, D))$ is the “sigma” term of \mathcal{K}, cf. e.g., Bonnans and Shapiro (2000).

C²-cone reducibility

Definition

The closed convex set \(\mathcal{K} \) is said to be **C²-cone reducible** at \(\overline{A} \in \mathcal{K} \), if there exist a open neighborhood \(\mathcal{W} \subset \mathcal{Y} \) of \(\overline{A} \), a pointed closed convex cone \(\mathcal{Q} \) (a cone is said to be pointed if and only if its lineality space is the origin) in a finite dimensional space \(\mathcal{Z} \) and a twice continuously differentiable mapping \(\Xi : \mathcal{W} \to \mathcal{Z} \) such that: (i) \(\Xi(\overline{A}) = 0 \in \mathcal{Z} \); (ii) the derivative mapping \(\Xi'(\overline{A}) : \mathcal{Y} \to \mathcal{Z} \) is onto; (iii) \(\mathcal{K} \cap \mathcal{W} = \{ A \in \mathcal{W} \mid \Xi(A) \in \mathcal{Q} \} \). We say that \(\mathcal{K} \) is C²-cone reducible if \(\mathcal{K} \) is C²-cone reducible at every \(\overline{A} \in \mathcal{K} \).
C^2-cone reducibility

Definition

The closed convex set \mathcal{K} is said to be **C^2-cone reducible** at $\overline{A} \in \mathcal{K}$, if there exist a open neighborhood $\mathcal{W} \subset \mathcal{Y}$ of \overline{A}, a pointed closed convex cone Q (a cone is said to be pointed if and only if its lineality space is the origin) in a finite dimensional space \mathcal{Z} and a twice continuously differentiable mapping $\Xi : \mathcal{W} \rightarrow \mathcal{Z}$ such that:

1. $\Xi(\overline{A}) = 0 \in \mathcal{Z}$;
2. the derivative mapping $\Xi'(\overline{A}) : \mathcal{Y} \rightarrow \mathcal{Z}$ is onto;
3. $\mathcal{K} \cap \mathcal{W} = \{ A \in \mathcal{W} | \Xi(A) \in Q \}$. We say that \mathcal{K} is C^2-cone reducible if \mathcal{K} is C^2-cone reducible at every $\overline{A} \in \mathcal{K}$.

- a closed polyhedral convex set; SOC; PSD cone; ...

(Y. Cui, C. Ding and X.Y. Zhao, Quadratic Growth Conditions for Convex Matrix Optimization Problems Associated with Spectral Functions, to appear in SIAM Journal on Optimization (2017).)
Definition

The closed convex set \mathcal{K} is said to be C^2-cone reducible at $\bar{A} \in \mathcal{K}$, if there exist a open neighborhood $\mathcal{W} \subseteq \mathcal{Y}$ of \bar{A}, a pointed closed convex cone Q (a cone is said to be pointed if and only if its lineality space is the origin) in a finite dimensional space \mathcal{Z} and a twice continuously differentiable mapping $\Xi : \mathcal{W} \rightarrow \mathcal{Z}$ such that: (i) $\Xi(\bar{A}) = 0 \in \mathcal{Z}$; (ii) the derivative mapping $\Xi'(\bar{A}) : \mathcal{Y} \rightarrow \mathcal{Z}$ is onto; (iii) $\mathcal{K} \cap \mathcal{W} = \{ A \in \mathcal{W} \mid \Xi(A) \in Q \}$. We say that \mathcal{K} is C^2-cone reducible if \mathcal{K} is C^2-cone reducible at every $\bar{A} \in \mathcal{K}$.

- a closed polyhedral convex set; SOC; PSD cone; ...
- **spectral functions:** nuclear norm; Ky Fan k-norm; ...

19
Definition

The closed convex set \mathcal{K} is said to be C^2-cone reducible at $\bar{A} \in \mathcal{K}$, if there exist a open neighborhood $\mathcal{W} \subset \mathcal{U}$ of \bar{A}, a pointed closed convex cone \mathcal{Q} (a cone is said to be pointed if and only if its lineality space is the origin) in a finite dimensional space \mathcal{Z} and a twice continuously differentiable mapping $\Xi : \mathcal{W} \to \mathcal{Z}$ such that: (i) $\Xi(\bar{A}) = 0 \in \mathcal{Z}$; (ii) the derivative mapping $\Xi'(\bar{A}) : \mathcal{V} \to \mathcal{Z}$ is onto; (iii) $\mathcal{K} \cap \mathcal{W} = \{ A \in \mathcal{W} | \Xi(A) \in \mathcal{Q} \}$. We say that \mathcal{K} is C^2-cone reducible if \mathcal{K} is C^2-cone reducible at every $\bar{A} \in \mathcal{K}$.

- a closed polyhedral convex set; SOC; PSD cone; ...
- spectral functions: nuclear norm; Ky Fan k-norm; ... (cf. Cui et al. (2017)14 for more details)

Main results
Robust isolated calm = isolated calm + lower semi-continuous
The lower semi-continuity of S_{KKT}

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suppose that \bar{x} is an isolated locally optimal solution with $(a, b) = (0, 0)$ and the corresponding set of Lagrange multipliers $M(\bar{x}, 0, 0) \neq \emptyset$. If the strict Robinson CQ holds at \bar{x} with respect to $\bar{y} \in M(\bar{x}, 0, 0)$, then the KKT solution mapping S_{KKT} is lower semi-continuous at $(0, 0, \bar{x}, \bar{y}) \in \text{gph } S_{\text{KKT}}$.</td>
</tr>
</tbody>
</table>
The lower semi-continuity of S_{KKT}

Proposition

Suppose that \bar{x} is an isolated locally optimal solution with $(a, b) = (0, 0)$ and the corresponding set of Lagrange multipliers $M(\bar{x}, 0, 0) \neq \emptyset$. If the strict Robinson CQ holds at \bar{x} with respect to $\bar{y} \in M(\bar{x}, 0, 0)$, then the KKT solution mapping S_{KKT} is lower semi-continuous at $(0, 0, \bar{x}, \bar{y}) \in \text{gph } S_{\text{KKT}}$.

- The strict Robinson CQ (SRCQ) is said to hold with $(a, b) = (0, 0)$ at \bar{x} with respect to $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$ if

 $$G'(\bar{x})\mathcal{X} + \mathcal{T}_K(G(\bar{x})) \cap \bar{y}^\perp = \mathcal{Y}.$$
The lower semi-continuity of S_{KKT}

Proposition

Suppose that \bar{x} is an isolated locally optimal solution with $(a, b) = (0, 0)$ and the corresponding set of Lagrange multipliers $M(\bar{x}, 0, 0) \neq \emptyset$. If the **strict Robinson CQ** holds at \bar{x} with respect to $\bar{y} \in M(\bar{x}, 0, 0)$, then the KKT solution mapping S_{KKT} is **lower semi-continuous** at $(0, 0, \bar{x}, \bar{y}) \in \text{gph } S_{KKT}$.

- The **strict Robinson CQ** (SRCQ) is said to hold with $(a, b) = (0, 0)$ at \bar{x} with respect to $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$ if

 $$G'(\bar{x}) \mathcal{X} + T_K(G(\bar{x})) \cap \bar{y}^\perp = \mathcal{Y}.$$

- The set of Lagrange multipliers $M(\bar{x}, 0, 0)$ is a **singleton** if the SRCQ holds.
The isolatedness of X_{KKT}

We can extend Robinson’s classical result on the isolatedness of an optimal solution Robinson (1982) to the non-polyhedral case by the reduction approach.
The isolatedness of X_{KKT}

We can extend Robinson’s classical result on the isolatedness of an optimal solution Robinson (1982) to the non-polyhedral case by the reduction approach.

Proposition

Suppose that the RCQ holds at a locally optimal solution \bar{x} with $(a, b) = (0, 0)$ and that Robinson’s SOSC

$$\inf_{y \in M(\bar{x}, 0, 0)} \left\{ \langle d, \nabla_{xx}^2 L(\bar{x}; y) d \rangle - \sigma \left(y, T^2_K(G(\bar{x}), G'(\bar{x})d) \right) \right\} > 0 \quad \forall \ d \in C(\bar{x}) \setminus \{0\}$$

holds at \bar{x}. Then, there exists an open neighborhood V of \bar{x} such that $X_{\text{KKT}}(0, 0) \cap V = \{x\}$, which implies that \bar{x} is an isolated locally optimal solution with $(a, b) = (0, 0)$.

The equivalent reformulation

When \((a, b) = (0, 0)\), the KKT system is equivalent to the following system of non-smooth equations:

\[F(x, y) = 0, \]

where \(F : \mathcal{X} \times \mathcal{Y} \rightarrow \mathcal{X} \times \mathcal{Y} \) is the natural mapping defined by

\[
F(x, y) := \begin{bmatrix}
\nabla f(x) + G'(x)^* y \\
G(x) - \Pi_K (G(x) + y)
\end{bmatrix}, \quad (x, y) \in \mathcal{X} \times \mathcal{Y}.
\]
The equivalent reformulation

When \((a, b) = (0, 0)\), the KKT system is equivalent to the following system of nonsmooth equations:

\[
F(x, y) = 0,
\]

where \(F : \mathcal{X} \times \mathcal{Y} \to \mathcal{X} \times \mathcal{Y}\) is the natural mapping defined by

\[
F(x, y) := \begin{bmatrix}
\nabla f(x) + G'(x)^*y \\
G(x) - \Pi_K(G(x) + y)
\end{bmatrix}, \quad (x, y) \in \mathcal{X} \times \mathcal{Y}.
\]

Lemma

Let \((0, 0, \bar{x}, \bar{y}) \in \text{gph} \ S_{\text{KKT}}\). The set-valued mapping \(S_{\text{KKT}}\) is isolated calm at the origin for \((\bar{x}, \bar{y})\) if and only if the set-valued mapping \(F^{-1}\) is isolated calm at the origin for \((\bar{x}, \bar{y})\).
The characterization of the robust isolated calmness

<table>
<thead>
<tr>
<th>Theorem</th>
</tr>
</thead>
</table>

Let \bar{x} be a feasible solution with $(a, b) = (0, 0)$. Suppose that the RCQ holds at \bar{x}. Assume that \mathcal{K} is C^2-cone reducible at $G(\bar{x})$ with respect to $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$. Then the following statements are equivalent:

(i) the SRCQ holds at \bar{x} with respect to \bar{y} and the SOSC holds at \bar{x} with $(a, b) = (0, 0)$;

(ii) \bar{x} is a locally optimal solution with $(a, b) = (0, 0)$ and S_{KKT} is **robustly isolated calm** at the origin for (\bar{x}, \bar{y});

(iii) \bar{x} is a locally optimal solution with $(a, b) = (0, 0)$ and S_{KKT} is **isolated calm** at the origin for (\bar{x}, \bar{y}).

The isolated calmness of the mapping F^{-1} at the origin for (\bar{x}, \bar{y}) implies the following error bound result: there exist a constant $\kappa > 0$ and a neighborhood \mathcal{V} of (\bar{x}, \bar{y}) in $\mathcal{X} \times \mathcal{Y}$ such that

$$\| (x, y) - (\bar{x}, \bar{y}) \| \leq \kappa \| F(x, y) \| \quad \forall (x, y) \in \mathcal{V}. $$
By combining Fusek (2013), Klatte and Kummer (2013) and Fusek (2001), we obtain

Proposition

Let \bar{x} be a stationary point with $(a, b) = (0, 0)$. Suppose that S_{KKT} has the Aubin property at the origin for (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then

- the constraint non-degeneracy condition holds at \bar{x};
- F^{-1} is isolated calm at the origin for (\bar{x}, \bar{y}).

The constraint non-degeneracy is said to hold with $(a, b) = (0, 0)$ at \bar{x} if $G'(\bar{x}) X + \text{lin}\{T_{K}(G(\bar{x}))\} = Y$.

The constraint non-degeneracy is stronger than the SRCQ.
By combining Fusek (2013), Klatte and Kummer (2013) and Fusek (2001), we obtain

Proposition

Let \bar{x} be a stationary point with $(a, b) = (0, 0)$. Suppose that S_{KKT} has the Aubin property at the origin for (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then

- the **constraint non-degeneracy** condition holds at \bar{x};
- F^{-1} is **isolated calm** at the origin for (\bar{x}, \bar{y}).
Robust isolated calmness v.s. Aubin property

By combining Fusek (2013), Klatte and Kummer (2013) and Fusek (2001), we obtain

Proposition

Let \bar{x} be a stationary point with $(a, b) = (0, 0)$. Suppose that S_{KKT} has the Aubin property at the origin for (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then

- the **constraint non-degeneracy** condition holds at \bar{x};
- F^{-1} is **isolated calm** at the origin for (\bar{x}, \bar{y}).

The **constraint non-degeneracy** is said to hold with $(a, b) = (0, 0)$ at \bar{x} if

$$G'(\bar{x})\mathcal{X} + \text{lin} \{T_K(G(\bar{x}))\} = \mathcal{Y}.$$
By combining Fusek (2013), Klatte and Kummer (2013) and Fusek (2001), we obtain

Proposition

Let \bar{x} be a stationary point with $(a, b) = (0, 0)$. Suppose that S_{KKT} has the Aubin property at the origin for (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then (\bar{x}, \bar{y}) with $\bar{y} \in M(\bar{x}, 0, 0) \neq \emptyset$, then

- the **constraint non-degeneracy** condition holds at \bar{x};
- F^{-1} is **isolated calm** at the origin for (\bar{x}, \bar{y}).

The **constraint non-degeneracy** is said to hold with $(a, b) = (0, 0)$ at \bar{x} if

$$G'(\bar{x})X + \text{lin} \{T_K(G(\bar{x}))\} = \mathcal{Y}.$$

The constraint non-degeneracy is stronger than the SRCQ.
Another example

\[
\begin{align*}
\min & \quad \frac{1}{2} (X_{11} - 1)^2 + \frac{1}{2} (X_{22} - 2X_{12})^2 \\
\text{s.t.} & \quad \langle E, X \rangle \leq 1, \\
& \quad X \in S^2_+.
\end{align*}
\]
Another example

\[
\begin{align*}
\min & \quad \frac{1}{2}(X_{11} - 1)^2 + \frac{1}{2}(X_{22} - 2X_{12})^2 \\
\text{s.t.} & \quad \langle E, X \rangle \leq 1, \\
& \quad X \in S^2_+.
\end{align*}
\]

- \(\overline{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) is the unique optimal solution and
 \((\overline{s}, \overline{Y}) = (0, 0) \in \mathbb{R} \times S^2 \) is the unique corresponding Lagrange multiplier.
Another example

\[
\begin{align*}
\min & \quad \frac{1}{2}(X_{11} - 1)^2 + \frac{1}{2}(X_{22} - 2X_{12})^2 \\
\text{s.t.} & \quad \langle E, X \rangle \leq 1, \\
& \quad X \in S^2_+.
\end{align*}
\]

- \(\overline{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) is the unique optimal solution and
 \((\bar{s}, \bar{Y}) = (0, 0) \in \mathbb{R} \times S^2\) is the unique corresponding Lagrange multiplier.

- Both SRCQ and SOSC hold, which implies \(S_{KKT} \) is robustly isolated calm at the origin for \((\overline{X}, \bar{s}, \bar{Y})\).
Another example

\[\min \quad \frac{1}{2}(X_{11} - 1)^2 + \frac{1}{2}(X_{22} - 2X_{12})^2 \]
\[\text{s.t.} \quad \langle E, X \rangle \leq 1, \]
\[X \in S^2_+. \]

- \(\overline{X} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \) is the unique optimal solution and

\((\overline{s}, \overline{Y}) = (0, 0) \in \mathbb{R} \times S^2 \) is the unique corresponding Lagrange multiplier.

- Both SRCQ and SOSC hold, which implies \(S_{KKT} \) is robustly isolated calm at the origin for \((\overline{X}, \overline{s}, \overline{Y}) \).

- Aubin property/strong regularity of \(S_{KKT} \) fails to hold since the strong SOSC does not hold.
Conclusions

Robust isolated calmness

Aubin property

Strong Regularity

SOSC + SRCQ

SOSC + Non-degeneracy

SOSC + Non-degeneracy

Robust isolated calmness

Convex

Strong Regularity

SOSC + SRCQ
Thank you