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Abstract. Spectral operators of matrices proposed recently in [C. Ding, D.F. Sun, J. Sun, and K.C. Toh, Math. Program. 168,
509–531 (2018)] are a class of matrix valued functions, which map matrices to matrices by applying a vector-to-vector function to
all eigenvalues/singular values of the underlying matrices. Spectral operators play a crucial role in the study of various applications
involving matrices such as matrix optimization problems (MOPs) that include semidefinite programming as one of the most important
example classes. In this paper, we will study more fundamental first- and second-order properties of spectral operators, including the
Lipschitz continuity, ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1), ρ-order G-semismoothness (0 < ρ ≤ 1), and characterization
of generalized Jacobians.
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1. Introduction. Spectral operators of matrices introduced recently in [19] are a class of matrix valued
functions defined on a given real Euclidean vector space X of real/complex matrices over the scalar field
of real numbers R. Unlike the well-studied classical matrix functions [27, Chapter 9], [32, Chapter 6],
[2, 31, 30], which are Löwner’s operators generated by applying a single-variable function to each of the
eigenvalues/singular values of the underlying matrices, the spectral operators introduced in [19] generate
matrix valued functions by applying a vector-to-vector function to all eigenvalues/singular values of the
underlying matrices (see Definition 2 for details).

Besides its intrinsic theoretical interest in linear algebra, spectral operators play a crucial role in the
study of a class of optimization problems known as matrix optimization problems (MOPs), which include
many important problems such as matrix norm approximation, matrix completion, rank minimization, graph
theory, machine learning, and etc. [28, 69, 70, 59, 37, 7, 8, 9, 11, 73, 13, 45, 22, 35, 26, 46, 47, 78, 42].
In particular, for a given unitarily invariant proper closed convex function f : X → (−∞,∞], the spectral
operator that is closely related to MOPs is the proximal mapping [61] of f at X , which is defined by

(1) Pf (X) := argminY∈X

{
f (Y )+

1
2
‖Y −X‖2

}
, X ∈X ,

where X is either the real vector subspace Sm of m×m real symmetric or complex Hermitian matrices,
or the real vector subspace Vm×n of m× n (assume m ≤ n) real/complex matrices. Among different MOP
applications, semidefinite programming (SDP) [68] is arguably one of the most influential classes of prob-
lems and its importance has been well-recognized by researchers even beyond the optimization community.
Recent exciting progress has been made both in the design of efficient numerical methods for solving large
scale SDPs [77, 74] and in the study of second-order variational analysis of SDP problems [21, 64, 10, 50],
in which the first- and second-order properties of the special spectral operator, the projection operator over
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the positive semidefinite matrix cone [65, 67], have played an essential role. However, for the general MOPs
arising recently from different fields, the classical theory developed for Löwner’s operators has become
inadequate to cope with the new theoretical developments and needs. Beyond the spectral operators of ma-
trices arising from proximal mappings, more general spectral operators indeed have played a pivotal role
in many other MOP applications [48]. Therefore, the study of the general spectral operators will provide
the necessary foundations for both computational and theoretical study of the general MOPs. In particular,
the first- and second-order properties of spectral operators obtained in [19] including the well-definedness,
continuity, directional differentiability, and Fréchet-differentiability are of fundamental importance in the
study of MOPs [18, 43, 12, 17].

In this paper, we will follow the path set in [19] to conduct extensive theoretical studies on spectral
operators. More first- and second-order properties of spectral operators will be discussed in depth. These in-
clude the Lipschitz continuity, ρ-order B(ouligand)-differentiability (0< ρ ≤ 1), ρ-order G-semismoothness
(0 < ρ ≤ 1), and characterization of generalized Jacobians. In particular, we will study the semismoothness
[49, 58] of spectral operators, which is one of the most important properties for both algorithm design and
theoretical study of the general MOPs. Historically, the semismoothness of vector-valued functions had
played a crucial role in constructing nonsmooth and smoothing Newton method for nonlinear equations and
related problems. In fact, it is shown in [58, 57, 55] that the (strong) semismoothness is the key property
for the local (quadratic) superlinear convergence of the Newton method. Nowadays the semismooth Newton
method has became one of the most important techniques in optimization [34, 72, 77, 74, 40, 41, 76]. In par-
ticular, the several semismooth Newton based methods have been proposed for solving various large-scale
optimization problems in machine learning applications such as the lasso, fused lasso and convex clustering
problems, and they have significantly outperformed a number of state-of-the-art solvers in terms of effi-
ciency and robustness [40, 41, 76]. For MOPs, the semismoothness of the special spectral operator: the
projection operator over the SDP cone, has played a key role in the development of the semismooth Newton
based augmented Laggrangian method implemented in the software package SDPNAL [77] and its enhanced
version SDPNAL+ [74] for solving large-scale SDP problems. Therefore, based on these recent progress,
we believe that the results on the semismoothness of spectral operators obtained in this paper will lay a
foundation for the research on general MOPs. For the proximal mapping (1), one can obtain its semismooth
property by employing the results recently developed based on semi-algebraic geometry [3, 16]. It is shown
in [4, 33] that locally Lipschitz continuous tame functions (e.g., the proximal mapping (1)) are semismooth.
For more recent developments on semi-algebraic geometry in optimization, see [1, 23, 24, 14, 39, 6, 5] and
the references therein. It is worth to note that unlike our approach, by just employing its tameness, one
may not able to obtain the explicit formulas of the directional derivative and, more importantly, the strong
semismoothness of the proximal mapping (see Section 5 for details).

Another fundamental property, which we will study, is the characterization of the Clarke generalized
Jacobians [15] of the locally Lipschitz continuous spectral operators. This is an important theoretical topic in
the second-order variational analysis, which is crucial for the study of many perturbation properties of MOPs
such as the strong regularity [56, 64, 10], and full and tilt stability [50, 51]. In addition, for the software
packages SDPNAL and SDPNAL+, due to the explicit characterization of the Clarke generalized Jacobian of
the projection operator over the positive semidefinite matrix cone, it becomes possible to exploit the second
order sparsity of the SDP problems inherited from the sparse structure of the generalized Jacobian of the
reformulated semismooth equations. The second order sparsity can substantially reduce the computational
cost of solving the resulting linear systems associated with the semismooth Newton directions. Indeed the
efficient computation of the semismooth Newton directions is one of the biggest computational challenges
in designing efficient second-order numerical methods for solving large-scale problems. To summarize, we
believe that the fundamental results obtained in this paper, especially the second-order properties such as
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the semismoothness and the Clarke generalized Jacobian of spectral operators, are of importance in both the
computational and theoretical study of general MOPs.

The remaining parts of this paper are organized as follows. In Section 2, we briefly review several
preliminary properties of spectral operators of matrices. We study the Lipschitz continuity and Bouligand-
differentiability of spectral operators defined on a single matrix space Vm×n in Sections 3 and 4, respectively.
Then, the G-semismoothness and characterization of the Clarke generalized Jacobians of spectral operators
are presented in Section 5 and 6. In Section 7, we extend the corresponding results to spectral operators
defined on the Cartesian product of several matrix spaces and the smoothing spectral operators. We make
some final remarks in Section 8.

Below are some common notations and symbols to be used later in the paper:
• For any X ∈ Vm×n, we denote by Xi j the (i, j)-th entry of X and x j the j-th column of X . Let

I ⊆ {1, . . . ,m} and J ⊆ {1, . . . ,n} be two index sets. We use XJ to denote the sub-matrix of X
obtained by removing all the columns of X not in J and XIJ to denote the |I|× |J| sub-matrix of X
obtained by removing all the rows of X not in I and all the columns of X not in J.

• For X ∈Vm×m, diag(X) denotes the column vector consisting of all the diagonal entries of X being
arranged from the first to the last. For x ∈ Rm, Diag(x) denotes the m×m diagonal matrix whose
i-th diagonal entry is xi, i = 1, . . . ,m.

• We use “◦” to denote the usual Hadamard product between two matrices, i.e., for any two matrices
A and B in Vm×n the (i, j)-th entry of Z := A◦B ∈ Vm×n is Zi j = Ai jBi j.

• For any X ∈ Sm, we use λ : Sm → Rm to denote the mapping of the ordered eigenvalues of a
Hermitian matrix X satisfying λ1(X) ≥ λ2(X) ≥ . . . ≥ λm(X). For any X ∈ Vm×n, we use σ :
Vm×n→Rm to denote the mapping of the ordered singular values of X satisfying σ1(X)≥ σ2(X)≥
. . .≥ σm(X)≥ 0.

• Let Op (p = m,n) be the set of p× p orthogonal/unitary matrices. We denote Pp and ±Pp to be
the sets of all p× p permutation matrices and signed permutation matrices, respectively. For any
Y ∈ Sm and Z ∈ Vm×n, we use Om(Y ) to denote the set of all orthogonal matrices whose columns
form an orthonormal basis of eigenvectors of Y , and use Om,n(Z) to denote the set of all pairs of
orthogonal matrices (U,V ), where the columns of U and V form a compatible set of orthonormal
left and right singular vectors for Z, respectively.

2. Spectral operators of matrices. The general spectral operators of matrices introduced by [19] are
defined on the Cartesian product of several real or complex matrix spaces. In order to summarize the prop-
erties of spectral operators, we first introduce some definitions and notations, which are needed in the sub-
sequent analysis.

Let s be a positive integer and 0≤ s0 ≤ s be a nonnegative integer. For given positive integers m1, . . . ,ms
and ns0+1, . . . ,ns, define the real vector space X by

(2) X := Sm1 × . . .×Sms0 ×Vms0+1×ns0+1 × . . .×Vms×ns .

Without loss of generality, we assume that mk ≤ nk, k = s0 + 1, . . . ,s. For any X = (X1, . . . ,Xs) ∈X , we
have for 1≤ k ≤ s0, Xk ∈ Smk and s0 +1≤ k ≤ s, Xk ∈ Vmk×nk . Denote

(3) Y := Rm1 × . . .×Rms0 ×Rms0 × . . .×Rms .

For any X ∈X , define κ(X) ∈ Y by κ(X) :=
(
λ (X1), . . . ,λ (Xs0),σ(Xs0+1), . . . ,σ(Xs)

)
. Define the set P

by
P := {(Q1, . . . ,Qs) | Qk ∈ Pmk , 1≤ k ≤ s0 and Qk ∈ ±Pmk , s0 +1≤ k ≤ s} .

Let g : Y → Y be a given mapping. For any x = (x1, . . . ,xs) ∈ Y with xk ∈ Rmk , we write g(x) ∈ Y in the
form g(x) = (g1(x), . . . ,gs(x)) with gk(x) ∈ Rmk for 1≤ k ≤ s.
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DEFINITION 1. The given mapping g : Y → Y is said to be mixed symmetric, with respect to P , at
x = (x1, . . . ,xs) ∈ Y with xk ∈ Rmk , if

(4) g(Q1x1, . . . ,Qsxs) = (Q1g1(x), . . . ,Qsgs(x)) ∀ (Q1, . . . ,Qs) ∈P.

The mapping g is said to be mixed symmetric, with respect to P , over a set D ⊆ Y if (4) holds for every
x ∈D . We call g a mixed symmetric mapping, with respect to P , if (4) holds for every x ∈ Y .

Note that for each k ∈ {1, . . . ,s}, the function value gk(x) ∈ Rmk is dependent on all x1, . . . ,xs. When
there is no danger of confusion, in later discussions we often drop the phrase “with respect to P” from
Definition 1. Let N be a given nonempty set in X . Define κN := {κ(X) ∈ Y | X ∈N }. The following
definition of the spectral operator with respect to a mixed symmetric mapping g is given by [19, Definition
1].

DEFINITION 2. Suppose that g : Y → Y is mixed symmetric on κN . The spectral operator G : N →
X with respect to g is defined as G(X) := (G1(X), . . . ,Gs(X)) for X = (X1, . . . ,Xs) ∈N such that

Gk(X) :=

{
PkDiag

(
gk(κ(X))

)
PT

k if 1≤ k ≤ s0,

Uk
[
Diag

(
gk(κ(X))

)
0
]
VT

k if s0 +1≤ k ≤ s,

where Pk ∈Omk(Xk), 1≤ k ≤ s0, (Uk,Vk) ∈Omk,nk(Xk), s0 +1≤ k ≤ s.
For the well-definedness, continuity and F(réchet)-differentiability of spectral operators, one may refer

to [19] for details. It is worth mentioning that for the case that X ≡ Sm (or Vm×n) and g has the form
g(y) = (h(y1), . . . ,h(ym)) ∈ Rm with yi ∈ R for some given scalar valued function h : R→ R, the corre-
sponding spectral operator G is just the Löwner operator coined in [67] in recognition of Löwner’s original
contribution on this topic in [44] (or the Löwner non-Hermitian operator [75] if h(0) = 0). In [75], Yang
studied several important first and second order properties of the Löwner non-Hermitian operator, including
its F-differentiability and the explicit derivative formula (the equivalent form also can be found in [52]).

Next, we will focus on the study of spectral operators for the case that X ≡ Vm×n. The corresponding
extensions for the spectral operators defined on the general Cartesian product of several matrix spaces will
be presented in Section 7.

Let N be a given nonempty open set in Vm×n. Suppose that g : Rm → Rm is mixed symmetric
with respect to P ≡ ±Pm (i.e., absolutely symmetric), on an open set σ̂N in Rm containing σN :=
{σ(X) | X ∈N }. The spectral operator G : N → Vm×n with respect to g defined in Definition 2 then
takes the form of

G(X) =U [Diag(g(σ(X))) 0]VT, X ∈N ,

where (U,V ) ∈Om,n(X). For a given X ∈N , consider the singular value decomposition (SVD) of X , i.e.,

(5) X =U
[
Σ(X) 0

]
VT

,

where Σ(X) is an m×m diagonal matrix whose i-th diagonal entry is σi(X), U ∈Om and V =
[
V 1 V 2

]
∈On

with V 1 ∈ Vn×m and V 2 ∈ Vn×(n−m).
We end this section by further introducing some necessary notations and results, which are used in later

discussions. Let σ := σ(X) ∈ Rm. We use ν1 > ν2 > .. . > νr > 0 to denote the nonzero distinct singular
values of X . Let al , l = 1, . . . ,r, a, b and c be the index sets defined by

(6)
al := {i | σi(X) = ν l , 1≤ i≤ m}, l = 1, . . . ,r, a := {i | σi(X)> 0, 1≤ i≤ m},
b := {i | σi(X) = 0, 1≤ i≤ m} and c := {m+1, . . . ,n}.
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Denote ā := {1, . . . ,n}\a. For each i ∈ {1, . . . ,m}, we also define li(X) to be the number of singular values
which are equal to σi(X) but are ranked before i (including i), and l̃i(X) to be the number of singular values
which are equal to σi(X) but are ranked after i (excluding i), i.e., define li(X) and l̃i(X) such that

σ1(X)≥ . . .≥ σi−li(X)(X)> σi−li(X)+1(X) = . . .= σi(X) = . . .= σi+l̃i(X)(X)

> σi+l̃i(X)+1(X)≥ . . .≥ σm(X).(7)

In later discussions, when the dependence of li and l̃i on X is clear from the context, we often drop X from
these notations for convenience. We define two linear matrix operators S : Vp×p→ Sp, T : Vp×p→Vp×p by

(8) S(Y ) :=
1
2
(Y +YT), T (Y ) :=

1
2
(Y −YT), Y ∈ Vp×p.

For any given X ∈N , let σ = σ(X). For the mapping g, we define three matrices E 0
1 (σ),E 0

2 (σ) ∈ Rm×m

and F 0(σ) ∈ Rm×(n−m) (depending on X ∈N ) by

(E 0
1 (σ))i j :=

{
(gi(σ)−g j(σ))/(σi−σ j) if σi 6= σ j,

0 otherwise,
i, j ∈ {1, . . . ,m},(9)

(E 0
2 (σ))i j :=

{
(gi(σ)+g j(σ))/(σi +σ j) if σi +σ j 6= 0,
0 otherwise,

i, j ∈ {1, . . . ,m},(10)

(F 0(σ))i j :=

{
gi(σ)/σi if σi 6= 0,
0 otherwise,

i ∈ {1, . . . ,m}, j ∈ {1, . . . ,n−m}.(11)

When the dependence of E 0
1 (σ), E 0

2 (σ) and F 0(σ) on σ is clear from the context, we often drop σ from

these notations. In particular, let E
0
1, E

0
2 ∈ Vm×m and F

0 ∈ Vm×(n−m) be the matrices defined by (9)-(11)
with respect to σ = σ(X). Since g is absolutely symmetric at σ , we know from [19, Proposition 1] that for
all i ∈ al , 1≤ l ≤ r, the function values gi(σ) are the same (denoted by ḡl). Therefore, for any X ∈N , we
are able to decompose G into two parts, i.e.,

(12) GS(X) :=
r

∑
l=1

ḡlUl(X) and GR(X) := G(X)−GS(X),

where Ul(X) := ∑i∈al
uivTi with Om,n(X). It follows from [19, Lemma 1] that there exists an open neighbor-

hood B of X in N such that GS is twice continuously differentiable on B, and for any Vm×n 3 H→ 0,

(13) GS(X +H)−GS(X) = G′S(X)H +O(‖H‖2)

with

(14) G′S(X)H =U
[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1), F

0 ◦ (UTHV 2)
]
VT

.

In other words, in an open neighborhood of X , GS can be regarded as a “smooth part” of G and GR can be
regarded as the remaining “nonsmooth part” of G. As we will see in later developments, this decomposition
(12) can simplify many of our proofs.
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3. Lipschitz continuity. In this section, we analyze the local Lipschitz continuity of the spectral op-
erator G defined on a nonempty open set N . Let X ∈ N be given. Assume that g is locally Lipschitz
continuous near σ = σ(X) with module L > 0. Therefore, there exists a positive constant δ0 > 0 such that

‖g(σ)−g(σ ′)‖ ≤ L‖σ −σ
′‖ ∀σ ,σ ′ ∈ B(σ ,δ0) := {y ∈ σ̂N | ‖y−σ‖ ≤ δ0} .

By using the absolutely symmetric property of g on σ̂N , we obtain the following simple observation.
PROPOSITION 3. There exist a positive constant L′ > 0 and a positive constant δ > 0 such that for any

σ ∈ B(σ ,δ ),

|gi(σ)−g j(σ)| ≤ L′|σi−σ j| ∀ i, j ∈ {1, . . . ,m}, i 6= j, σi 6= σ j,(15)

|gi(σ)+g j(σ)| ≤ L′|σi +σ j| ∀ i, j ∈ {1, . . . ,m}, σi +σ j > 0,(16)

|gi(σ)| ≤ L′|σi| ∀ i ∈ {1, . . . ,m}, σi > 0.(17)

Proof. It is easy to check that there exists a positive constant δ1 > 0 such that for any σ ∈ B(σ ,δ1),

|σi−σ j| ≥ δ1 > 0 ∀ i, j ∈ {1, . . . ,m}, i 6= j, σ i 6= σ j,(18)

|σi +σ j| ≥ δ1 > 0 ∀ i, j ∈ {1, . . . ,m}, σ i +σ j > 0,(19)

|σi| ≥ δ1 > 0 ∀ i ∈ {1, . . . ,m}, σ i > 0.(20)

Let δ := min{δ0,δ1} > 0. Denote τ := max
i, j
{|gi(σ)− g j(σ)|, |gi(σ)+ g j(σ)|, |gi(σ)|} ≥ 0, L1 := (2Lδ +

τ)/δ and L′ := max{L1,
√

2L}. Let σ be any fixed vector in B(σ ,δ ).
Firstly, we consider the case that i, j ∈ {1, . . . ,m}, i 6= j and σi 6= σ j. If σ i 6= σ j, then from (18), we

know that

|gi(σ)−g j(σ)|= |gi(σ)−gi(σ)+gi(σ)−g j(σ)+g j(σ)−g j(σ)|

≤ 2‖g(σ)−g(σ)‖+ τ ≤ 2Lδ + τ

δ
|σi−σ j|= L1|σi−σ j|.(21)

If σ i = σ j, define t ∈ Rm by

tp :=


σp if p 6= i, j,
σ j if p = i,

σi if p = j,
p = 1, . . . ,m.

Then, we have ‖t−σ‖= ‖σ −σ‖ ≤ δ . Moreover, since g is absolutely symmetric on σ̂N , we have gi(t) =
g j(σ). Therefore

(22) |gi(σ)−g j(σ)|= |gi(σ)−gi(t)| ≤ ‖g(σ)−g(t)‖ ≤ L‖σ − t‖=
√

2L|σi−σ j|.

Thus, the inequality (15) follows from (21) and (22) immediately.
Secondly, consider the case i, j ∈ {1, . . . ,m} and σi +σ j > 0. If σ i +σ j > 0, it follows from (19) that

|gi(σ)+g j(σ)|= |gi(σ)−gi(σ)+gi(σ)+g j(σ)−g j(σ)+g j(σ)|

≤ 2‖g(σ)−g(σ)‖+ τ ≤ 2Lδ + τ

δ
|σi +σ j|= L1|σi +σ j|.(23)
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If σ i +σ j = 0, i.e., σ i = σ j = 0, define the vector t̂ ∈ Rm by

t̂p :=

 σp if p 6= i, j,
−σ j if p = i,
−σi if p = j,

p = 1, . . . ,m.

By noting that σ i = σ j = 0, we obtain that ‖t̂−σ‖= ‖σ −σ‖ ≤ δ . Again, since g is absolutely symmetric
on σ̂N , we have gi(t̂) =−g j(σ). Therefore,

(24) |gi(σ)+g j(σ)|= |gi(σ)−gi(t̂)| ≤ ‖g(σ)−g(t̂)‖ ≤ L‖σ − t̂‖=
√

2L|σi +σ j|.

Thus the inequality (16) follows from (23) and (24).
Finally, we consider the case that i ∈ {1, . . . ,m} and σi > 0. If σ i > 0, then we know from (20) that

|gi(σ)|= |gi(σ)−gi(σ)+gi(σ)| ≤ |gi(σ)−gi(σ)|+ |gi(σ)|

≤ ‖g(σ)−g(σ)‖+ τ ≤ 2Lδ + τ

δ
|σi| ≤ L1|σi|.(25)

If σ i = 0, define s ∈ Rm by

sp :=
{

σp if p 6= i,
0 if p = i, p = 1, . . . ,m.

Then, since σi > 0, we know that ‖s−σ‖ < ‖σ −σ‖ ≤ δ . Moreover, since g is absolutely symmetric on
σ̂N , we know that gi(s) = 0. Therefore, we have

(26) |gi(σ)|= |gi(σ)−gi(s)| ≤ ‖g(σ)−g(s)‖ ≤ L‖σ − s‖ ≤ L|σi|.

Thus, the inequality (15) follows from (25) and (26) immediately. This completes the proof.
For any fixed 0 < ω ≤ δ0/

√
m and y ∈ B(σ ,δ0/(2

√
m)) := {‖y−σ‖∞ ≤ δ0/(2

√
m)}, the function g is

integrable on Vω(y) := {z ∈ Rm | ‖y− z‖∞ ≤ ω/2} (in the sense of Lebesgue). Therefore, we know that the
function

(27) g(ω,y) :=
1

ωm

∫
Vω (y)

g(z)dz

is well-defined on (0,δ0/
√

m ]× B(σ ,δ0/(2
√

m)) and is said to be the Steklov averaged function [63]
of g. For the sake of convenience, we define g(0,y) = g(y). Since g is absolutely symmetric on σ̂N ,
it is easy to check that for any fixed 0 < ω ≤ δ0/

√
m, the function g(ω, ·) is also absolutely symmet-

ric on B(σ ,δ0/(2
√

m)). It follows from the definition (27) that g(·, ·) is locally Lipschitz continuous on
(0,δ0/

√
m ]×B(σ ,δ0/(2

√
m)) with the module L. Meanwhile, by elementary calculations, we know that

g(·, ·) is continuously differentiable on (0,δ0/
√

m ]×B(σ ,δ0/(2
√

m)) and for any fixed ω ∈ (0,δ0/
√

m ]
and y ∈ B(σ ,δ0/(2

√
m)), ‖g′y(ω,y)‖ ≤ L. Moreover, it is well known (cf. e.g., [29, Lemma 1]) that g(ω, ·)

converges to g uniformly on the compact set B(σ ,δ0/(2
√

m)) as ω ↓ 0. By using the derivative formula
of spectral operators obtained in [19, (38)], we can obtain the following results from [19, Theorem 4] and
Proposition 3, directly. For simplicity, we omit the detailed proof here.

PROPOSITION 4. Suppose that g is locally Lipschitz continuous near σ . Let g(·, ·) be the corresponding
Steklov averaged function defined in (27). Then, for any given ω ∈ (0,δ0/

√
m ], the spectral operator G(ω, ·)

with respect to g(ω, ·) is continuously differentiable on B(X ,δ0/(2
√

m)) := {X ∈ X | ‖σ(X)− σ‖∞ ≤
δ0/(2

√
m)}, and there exist two positive constants δ1 > 0 and L > 0 such that

(28) ‖G′(ω,X)‖ ≤ L ∀0 < ω ≤min{δ0/
√

m,δ1} and X ∈ B(X ,δ0/(2
√

m)).

Moreover, G(ω, ·) converges to G uniformly in the compact set B(X ,δ0/(2
√

m)) as ω ↓ 0.
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Proposition 4 allows us to derive the following result on the local Lipschitz continuity of spectral oper-
ators.

THEOREM 5. Suppose that X has the SVD (5). The spectral operator G is locally Lipschitz continuous
near X if and only if g is locally Lipschitz continuous near σ = σ(X).

Proof. “⇐= ” Suppose that g is locally Lipschitz continuous near σ = σ(X) with module L > 0, i.e.,
there exists a positive constant δ0 > 0 such that

‖g(σ)−g(σ ′)‖ ≤ L‖σ −σ
′‖ ∀σ ,σ ′ ∈ B(σ ,δ0).

By Proposition 4, for any ω ∈ (0,δ0/
√

m ], the spectral operator G(ω, ·) defined with respect to the Steklov
averaged function g(ω, ·) is continuously differentiable. Since G(ω, ·) converges to G uniformly in the
compact set B(X ,δ0/(2

√
m)) as ω ↓ 0, we know that for any ε > 0, there exists a constant δ2 > 0 such that

for any 0 < ω ≤ δ2,
‖G(ω,X)−G(X)‖ ≤ ε ∀X ∈ B(X ,δ0/(2

√
m)).

Fix any X ,X ′ ∈ B(X ,δ0/(2
√

m)) with X 6= X ′. By Proposition 4, we know that there exists δ1 > 0 such that
(28) holds. Let δ̄ := min{δ1,δ2,δ0/

√
m}. Then, by the mean value theorem, we know that

‖G(X)−G(X ′)‖= ‖G(X)−G(ω,X)+G(ω,X)−G(ω,X ′)+G(ω,X ′)−G(X ′)‖

≤ 2ε +‖
∫ 1

0
G′(ω,X + t(X−X ′))dt‖ ≤ L‖X−X ′‖+2ε ∀0 < ω < δ̄ .

Since X ,X ′ ∈ B(X ,δ0/(2
√

m)) and ε > 0 are arbitrary, by letting ε ↓ 0, we obtain that

‖G(X)−G(X ′)‖ ≤ L‖X−X ′‖ ∀X ,X ′ ∈ B(X ,δ0/(2
√

m)).

Thus G is locally Lipschitz continuous near X .
“ =⇒ ” Suppose that G is locally Lipschitz continuous near X with module L > 0, i.e., there exists an

open neighborhood B of X in N such that for any X ,X ′ ∈B,

‖G(X)−G(X ′)‖ ≤ L‖X−X ′‖.

Let (U ,V ) ∈ Om×n(X) be fixed. For any y ∈ σ̂N , we define Y := U [Diag(y) 0]VT. Then, we know
from [19, Proposition 3] that G(Y ) =U [Diag(g(y)) 0]VT. Therefore, we obtain that there exists an open
neighborhood Bσ of σ in σ̂N such that

‖g(y)−g(y′)‖= ‖G(Y )−G(Y ′)‖ ≤ L‖Y −Y ′‖= L‖y− y′‖ ∀y,y′ ∈Bσ .

This completes the proof.

4. Bouligand-differentiability. In this section, we shall study the ρ-order Bouligand-differentiability
of spectral operators with 0< ρ ≤ 1, which is a slightly stronger property than the directional differentiability
studied in [19, Theorem 3].

Let Z be a finite dimensional real Euclidean space equipped with an inner product 〈·, ·〉 and its induced
norm ‖ · ‖. Let O be an open set in Z and Z ′ be another finite dimensional real Euclidean space. The
function F : O ⊆ Z → Z ′ is said to be B(ouligand)-differentiable [60] (see also [53, 25, 54] for more
details) at z ∈ O if for any h ∈Z with h→ 0,

F(z+h)−F(z)−F ′(z;h) = o(‖h‖).
8



It is well known (cf. [62]) that if F is locally Lipschitz continuous then F is B-differentiable at z ∈ O if and
only if F is directionally differentiable at z. If the spectral operator G is directionally differentiable, then
the corresponding directional derivative formula is presented in [19, (21) in Theorem 3]. More precisely,
since g is absolutely symmetric on the nonempty open set σ̂N , it is easy to see that the directional derivative
φ := g′(σ ; ·) : Rm→ Rm satisfies

(29) g′(σ ;Qh) = Qg′(σ ;h) ∀Q ∈ ±Pm
σ and ∀h ∈ Rm ,

where ±Pm
σ

is the subset defined with respect to σ by ±Pm
σ

:= {Q ∈ ±Pm |σ = Qσ}. Thus, we know
that the function φ is a mixed symmetric mapping, with respect to P|a1|× . . .×P|ar |×±P|b|, over V :=
R|a1|× . . .×R|ar |×R|b|. Let Ψ := G′(X ; ·) : Vm×n → Vm×n be the directional derivative of G at X . Let
W := S|a1|× . . .×S|ar |×V|b|×(n−|a|). We know from [19, (21) Theorem 3] that for any H ∈ Vm×n,

Ψ(H) = G′(X ;H) =U
[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1) F

0 ◦UTHV 2

]
VT

+UΦ̂(D(H))VT

= G′S(X ;H)+UΦ̂(D(H))VT
,(30)

where D(H) =
(

S(H̃a1a1), . . . ,S(H̃arar), H̃bā

)
∈ W , H̃ = UTHV , Φ : W → W being the spectral operator

defined with respect to the mixed symmetric mapping φ = g′(σ ; ·), and Φ̂ : W → Vm×n is defined by

(31) Φ̂(W ) :=

[
Diag(Φ1(W ), . . . ,Φr(W )) 0

0 Φr+1(W )

]
∀W ∈W .

A stronger notion than B-differentiability is ρ-order B-differentiability with ρ > 0. The function F :
O ⊆Z →Z ′ is said to be ρ-order B-differentiable at z ∈ O if for any h ∈Z with h→ 0,

F(z+h)−F(z)−F ′(z;h) = O(‖h‖1+ρ).

Let X ∈Vm×n be given. We have the following results on the ρ-order B-differentiability of spectral operators.
THEOREM 6. Suppose that X ∈N has the SVD (5). Let 0 < ρ ≤ 1 be given.
(i) If g is locally Lipschitz continuous near σ(X) and ρ-order B-differentiable at σ(X), then G is

ρ-order B-differentiable at X.
(ii) If G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at σ(X).
Proof. Without loss of generality, we only prove the results for the case that ρ = 1.
(i) For any H ∈ Vm×n, denote X = X +H. Let U ∈Om and V ∈On be such that

(32) X =U [Σ(X) 0]VT.

Denote σ = σ(X). Let GS(X) and GR(X) be defined by (12). Therefore, by (13), we know that for any
H→ 0,

(33) GS(X)−GS(X) = G′S(X)H +O(‖H‖2),

where G′S(X)H is given by (14). For H ∈ Vm×n sufficiently small, we have Ul(X) = ∑i∈al
uivTi , l = 1, . . . ,r.

Therefore, we know that

(34) GR(X) = G(X)−GS(X) =
r+1

∑
l=1

∆l(H),
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where
∆l(H) = ∑

i∈al

(gi(σ)−gi(σ))uivTi l = 1, . . . ,r and ∆r+1(H) = ∑
i∈b

gi(σ)uivTi .

(a) We first consider the case that X = [Σ(X) 0]. Then, we know from the directional differentiability of
single values (cf. e.g., [36, Theorem 7], [71, Proposition 1.4] and [38, Section 5.1]) that for any H sufficiently
small,

(35) σ = σ +σ
′(X ;H)+O(‖H‖2),

where σ ′(X ;H) = (λ (S(Ha1a1)), . . . ,λ (S(Harar)),σ([Hbb Hbc])) ∈ Rm. Denote h := σ ′(X ;H). Since g is
locally Lipschitz continuous near σ and 1-order B-differentiable at σ , we know that for any H sufficiently
small,

g(σ)−g(σ) = g(σ +h+O(‖H‖2))−g(σ) = g(σ +h)−g(σ)+O(‖H‖2) = g′(σ ;h)+O(‖H‖2).

Let φ = g′(σ ; ·). Since uivTi , i = 1, . . . ,m are uniformly bounded, we obtain that for H sufficiently small,

∆l(H) =Ual Diag(φl(h))VT
al
+O(‖H‖2), l = 1, . . . ,r,

∆r+1(H) =UbDiag(φr+1(h))VT
b +O(‖H‖2).

Again, we know from [20, Proposition 7] that there exist Ql ∈ O|al |, M ∈ O|b| and N = [N1 N2] ∈ On−|a|

with N1 ∈ V(n−|a|)×|b| and N2 ∈ V(n−|a|)×(n−m) (depending on H) such that

Ual =

 O(‖H‖)
Ql +O(‖H‖)

O(‖H‖)

 , Val =

 O(‖H‖)
Ql +O(‖H‖)

O(‖H‖)

 , l = 1, . . . ,r,

Ub =

[
O(‖H‖)

M+O(‖H‖)

]
, [Vb Vc] =

[
O(‖H‖)

N +O(‖H‖)

]
.

Since g is locally Lipschitz continuous near σ and directionally differentiable at σ , we know from [60,
Theorem A.2] or [58, Lemma 2.2] that the directional derivative φ is globally Lipschitz continuous on Rm.
Thus, for H sufficiently small, we have ‖φ(h)‖= O(‖H‖). Therefore, we obtain that

∆l(H) =

 0 0 0

0 QlDiag(φl(h))QT
l 0

0 0 0

+O(‖H‖2), l = 1, . . . ,r,(36)

∆r+1(H) =

[
0 0

0 MDiag(φr+1(h))NT
1

]
+O(‖H‖2).(37)

Again, it follows from [20, Proposition 7] that

S(Halal ) = Ql(Σ(X)alal −ν lI|al |)Q
T
l +O(‖H‖2), l = 1, . . . ,r,(38)

[Hbb Hbc] = M(Σ(X)bb−νr+1I|b|)N
T
1 +O(‖H‖2).(39)
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Since g is locally Lipschitz continuous near σ = σ(X), we know from Theorem 5 that the spectral operator
G is locally Lipschitz continuous near X . Therefore, we know from [19, Theorem 3 and Remark 1] that G is
directionally differentiable at X . Thus, from [60, Theorem A.2] or [58, Lemma 2.2], we know that G′(X , ·)
is globally Lipschitz continuous on Vm×n. Moreover, from the definition of directional derivative and the
absolutely symmetry of g on the nonempty open set σ̂N , it is easy to see that the directional derivative
φ := g′(σ ; ·) is actually a mixed symmetric mapping over the space V := R|a1|× . . .×R|ar |×R|b|. Let
W := S|a1|× . . .×S|ar |×V|b|×(n−|a|). Thus, the corresponding spectral operator Φ defined with respect to φ

is globally Lipschitz continuous on the space W . Hence, we know from (34) that for H sufficiently small,

(40) GR(X) = Φ̂(D(H))+O(‖H‖2),

where D(H) = (S(Ha1a1), . . . ,S(Harar),Hbā) ∈W and Φ̂ is defined by (31)

(b) Next, consider the general case that X ∈Vm×n. For any H ∈Vm×n, we rewrite (32) by using the singular
value decomposition of X as follows: X̃ :=[Σ(X) 0]+UTHV = UTU [Σ(X) 0]VTV . Then, since U and
V are unitary matrices, we know from (40) that

(41) GR(X) =UGR(X̃)VT
=UΦ̂(D(H))VT

+O(‖H‖2),

where D(H) =
(

S(H̃a1a1), . . . ,S(H̃arar), H̃bā

)
and H̃ =UTHV . Thus, by combining (30), (33) and (41) and

noting that G(X) = GS(X), we obtain that for any H ∈ Vm×n sufficiently close to 0,

G(X)−G(X)−G′(X ;H)

= GR(X)+GS(X)−GS(X)−G′(X ;H) = GR(X)−UΦ̂(D(H))VT
+O(‖H‖2) = O(‖H‖2),

where the directional derivative G′(X ;H) of G at X along H is given by (30). This implies that G is 1-order
B-differentiable at X .

(ii) Suppose that G is 1-order B-differentiable at X . Let (U ,V ) ∈ Om×n(X) be fixed. For any h ∈ Rm,
let H = U [Diag(h) 0]VT ∈ Vm×n. We know from [19, Proposition 3] that for all h sufficiently close to 0,
G(X +H) =UDiag(g(σ +h))VT

1 . Therefore, we know from the assumption that

Diag(g(σ +h)−g(σ)) =UT (G(X +H)−G(X)
)

V 1 =UTG′(X ;H)V 1 +O(‖H‖2).

This shows that g is 1-order B-differentiable at σ . The proof is completed.

5. G-semismoothness. Let Z and Z ′ be two finite dimensional real Euclidean spaces and O be an
open set in Z . Suppose that F : O ⊆ Z → Z ′ is a locally Lipschitz continuous function on O . Then,
according to Rademacher’s theorem, F is almost everywhere differentiable (in the sense of Fréchet) in O .
Let DF be the set of points in O where F is differentiable. Let F ′(z) be the derivative of F at z ∈DF . Then
the B(ouligand)-subdifferential of F at z ∈ O is denoted by [57]:

∂BF(z) :=
{

lim
DF3zk→z

F ′(zk)

}
and the Clarke generalized Jacobian of F at z ∈ O [15] takes the form:

∂F(z) = conv{∂BF(z)},
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where “conv” stands for the convex hull in the usual sense of convex analysis [61]. The function F is said to
be G-semismooth at a point z ∈ O if for any y→ z and V ∈ ∂F(y),

F(y)−F(z)−V (y− z) = o(‖y− z‖).

A stronger notion than G-semismoothness is ρ-order G-semismoothness with ρ > 0. The function F is said
to be ρ-order G-semismooth at z if for any y→ z and V ∈ ∂F(y),

F(y)−F(z)−V (y− z) = O(‖y− z‖1+ρ).

In particular, the function F is said to be strongly G-semismooth at z if F is 1-order G-semismooth at z.
Furthermore, the function F is said to be (ρ-order, strongly) semismooth at z ∈ O if (i) the directional
derivative of F at z along any direction d ∈Z , denoted by F ′(z;d), exists; and (ii) F is (ρ-order, strongly)
G-semismooth.

The following result taken from [65, Theorem 3.7] provides a convenient tool for proving the G-
semismoothness of Lipschitz functions.

LEMMA 7. Let F : O ⊆ Z → Z ′ be a locally Lipschitz continuous function on the open set O , and
ρ > 0 be a constant. F is ρ-order G-semismooth (G-semismooth) at z if and only if for any DF 3 y→ z,

(42) F(y)−F(z)−F ′(y)(y− z) = O(‖y− z‖1+ρ)
(
= o(‖y− z‖)

)
.

Let X ∈N be given. Assume that g is locally Lipschitz continuous near σ =σ(X). Then from Theorem
5 we know that the corresponding spectral operator G is locally Lipschitz continuous near X . The following
theorem is on the G-semismoothness of the spectral operator G.

THEOREM 8. Suppose that X ∈N has the singular value decomposition (5). Let 0 < ρ ≤ 1 be given.
G is ρ-order G-semismooth at X if and only if g is ρ-order G-semismooth at σ .

Proof. Without loss of generality, we only prove the result for the case that ρ = 1.
“⇐= ” For any H ∈ Vm×n, denote X = X +H. Let U ∈Om and V ∈On be such that

(43) X =U [Σ(X) 0]VT.

Denote σ = σ(X). Recall the mappings GS and GR defined in (12). We know from [20, Proposition 8] that
there exists an open neighborhood B ⊆N of X such that GS twice continuously differentiable on B and

GS(X)−GS(X) =
r

∑
l=1

ḡl U
′

l (X)H +O(‖H‖2)

=
r

∑
l=1

ḡl

{
U [Γl(X)◦S(UTHV1)+Ξl(X)◦T (UTHV1)]VT

1 +U(ϒl(X)◦UTHV2)VT
2

}
+O(‖H‖2),(44)

where for each l ∈ {1, . . . ,r}, Γl(X), Ξl(X) and ϒl(X) are given by [20, (40)–(42)], respectively. By taking
a smaller B if necessary, we may assume that for any X ∈B and l, l′ ∈ {1, . . . ,r},

(45) σi(X)> 0, σi(X) 6= σ j(X) ∀ i ∈ al , j ∈ al′ and l 6= l′.

Since g is locally Lipschitz continuous near σ , we know that for any H sufficiently small,

(46) ḡl = gi(σ)+O(‖H‖) ∀ i ∈ al , l = 1, . . . ,r.
12



By noting that U ∈Om and V ∈On are uniformly bounded, we know from (44) and (46) that for any X ∈B
(shrinking B if necessary),

(47) GS(X)−GS(X) =U
[
E 0

1 ◦S(UTHV1)+E 0
2 ◦T (UTHV1) F 0 ◦UTHV2

]
VT+O(‖H‖2),

where E 0
1 , E 0

2 and F 0 are the corresponding real matrices defined in (9)–(11) (depending on X), respectively.
Let X ∈ DG ∩B, where DG is the set of points in Vm×n for which G is (F-)differentiable. Define the

corresponding index sets in {1, . . . ,m} for X by a′ := {i | σi(X)> 0} and b′ := {i | σi(X) = 0}. By (45), we
have

(48) a′ ⊇ a and b′ ⊆ b.

We know from [19, Theorem 4] that

(49) G′(X)H =U [E1 ◦S(UTHV1)+E2 ◦T (UTHV1)+Diag
(
C diag(S(UTHV1))

)
F ◦UTHV2]VT,

where η , E1, E2, F and C are defined by [19, (33)–(36)] with respect to σ , respectively. Denote ∆(H) :=
G′(X)H− (GS(X)−GS(X)). Moreover, since there exists an integer j ∈ {0, . . . , |b|} such that |a′|= |a|+ j,
we can define two index sets b1 := {|a|+ 1, . . . , |a|+ j} and b2 := {|a|+ j + 1, . . . , |a|+ |b|} such that
a′ = a∪b1 and b′ = b2. From (47) and (49), we obtain that

(50) ∆(H) =UR̂(H)VT+O(‖H‖2),

where R̂(H) ∈ Vm×n is defined by

R̂(H) :=
[

Diag(R1(H), . . . ,Rr(H)) 0
0 Rr+1(H)

]
,

Rl(H) = (E1)alal ◦S(UT
al

HVal )+Diag
(
(C diag(S(UTHV1)))alal

)
, l = 1, . . . ,r,(51)

Rr+1(H) =

[
(E1)b1b1 ◦S(UT

b1
HVb1)+Diag

(
(C diag(S(UTHV1)))b1b1

)
0 0

0 γUT
b2

HVb2 γUT
b2

HV2

]
(52)

and γ := (g′(σ))ii for any i ∈ b2. By (5), we obtain from (43) that[
Σ(X) 0

]
+UTHV =UTU [Σ(X) 0]VTV .

Let Ĥ := UTHV , Û := UTU and V̂ := VTV . Then, UTHV = ÛTUTHVV̂ = ÛTĤV̂ . We know from [20,
(31) in Proposition 7] that there exist Ql ∈O|al |, l = 1, . . . ,r and M ∈O|b|, N ∈On−|a| such that

UT
al

HVal = ÛT
al

ĤV̂al = QT
l Ĥalal Ql +O(‖H‖2), l = 1, . . . ,r,[

UT
b HVb UT

b HV2

]
=
[
ÛT

b ĤV̂b ÛT
b ĤV̂2

]
= MT

[
Ĥbb Ĥbc

]
N +O(‖H‖2).

Moreover, from [20, (32) and (33) in Proposition 7], we obtain that

S(UT
al

HVal ) = QT
l S(Ĥalal )Ql +O(‖H‖2) = Σ(X)alal −Σ(X)alal +O(‖H‖2), l = 1, . . . ,r,[

UT
b HVb UT

b HV2

]
= MT

[
Ĥbb Ĥbc

]
N =

[
Σ(X)bb−Σ(X)bb 0

]
+O(‖H‖2).
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Denote h = σ ′(X ;H) ∈ Rm. Since the singular value functions are strongly semismooth [66], we know that

S(UT
al

HVal ) = Diag(hal )+O(‖H‖2), l = 1, . . . ,r,

S(UT
b1

HVb1) = Diag(hb1)+O(‖H‖2),
[
UT

b2
HVb2 UT

b2
HV2

]
=
[
Diag(hb2) 0

]
+O(‖H‖2).

Therefore, since C = g′(σ)−Diag(η), by (51) and (52), we obtain from (50) that

(53) ∆(H) =U
[
Diag

(
g′(σ)h

)
0
]
VT+O(‖H‖2).

On the other hand, for X sufficiently close to X , we have Ul(X) = ∑i∈al
uivTi , l = 1, . . . ,r. Therefore,

(54) GR(X) = G(X)−GS(X) =
r

∑
l=1

∑
i∈al

[gi(σ)−gi(σ)]uivTi +∑
i∈b

gi(σ)uivTi .

Note that by definition, GR(X) = 0. We know from [19, Theorem 4] that G is differentiable at X if and only
if g is differentiable at σ . Since g is 1-order G-semismooth at σ and σ(·) is strongly semismooth, we obtain
that for any X ∈DG∩B (shrinking B if necessary),

g(σ)−g(σ) = g′(σ)(σ −σ)+O(‖H‖2) = g′(σ)(h+O(‖H‖2))+O(‖H‖2) = g′(σ)h+O(‖H‖2).

Then, since U ∈Om and U ∈On are uniformly bounded, we obtain from (54) that

GR(X) =U
[
Diag

(
g′(σ)h

)
0
]
VT+O(‖H‖2).

Thus, from (53), we obtain that ∆(H) = GR(X)+O(‖H‖2). That is, for any X ∈DG converging to X ,

G(X)−G(X)−G′(X)H = GR(X)+GS(X)−GS(X)−G′(X)H = GR(X)−∆(H) = O(‖H‖2).

“ =⇒ ” Suppose that G is 1-order G-semismooth at X . Let (U ,V ) ∈ Om×n(X) be fixed. Assume that
σ = σ +h ∈Dg and h ∈ Rm is sufficiently small. Let X =U [Diag(σ) 0]VT and H =U [Diag(h) 0]VT.
Then, X ∈ DG and converges to X if h goes to zero. We know from [19, Proposition 3] that for all h
sufficiently close to 0, G(X) =UDiag(g(σ))VT

1 . Therefore, for any h sufficiently close to 0,

Diag(g(σ +h)−g(σ)) =UT (G(X)−G(X)
)

V 1 =UTG′(X)HV 1 +O(‖H‖2).

Hence, since obviously Diag(g′(σ)h) = UTG′(X)HV 1, we know that for h sufficiently small, g(σ + h)−
g(σ) = g′(σ)h+O(‖h‖2). Thus, g is 1-order G-semismooth at σ .

It is worth mentioning that for matrix optimization problems, we are able to obtain the semismoothness
of the proximal point mapping Pf defined by (1) by employing the corresponding results on tame functions.
We first recall the following concept on the o(rder)-minimal structure (cf. [16, Definition 1.4]).

DEFINITION 9. An o-minimal structure of Rn is a sequence M = {Mi}∞
i=1 such that for each i≥ 1, Mi

is a collection of subsets of Ri satisfying the following axioms.
(i) For every i, Mi is closed under Boolean operators (finite unions, intersections and complement).

(ii) If A ∈Mi and B ∈Mi′ , then A×B belongs to Mi+i′ .
(iii) Mi contains all the subsets of the form {x ∈ Ri | p(x) = 0}, where p : Ri → R is a polynomial

function.
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(iv) Let Π : Ri+1→ Ri be the projection on the first i coordinates. If A ∈Mi+1, then Π(A) ∈Mi.
(v) The elements of M1 are exactly the finite union of points and intervals.

The elements of o-minimal structure are called definable sets. A map F : A⊆Rn→Rm is called definable if
its graph is a definable subset of Rn+m.
A set of Rn is called tame with respect to an o-minimal structure, if its intersection with the interval [−r,r]n

for every r > 0 is definable in this structure, i.e., the element of this structure. A mapping is tame if its graph
is tame. One most frequently used o-minimal structure is the class of semialgebraic subsets of Rn. A set in
Rn is semialgebraic if it is a finite union of sets of the form{

x ∈ Rn | pi(x)> 0, q j(x) = 0, i = 1, . . . ,a, j = 1, . . . ,b
}
,

where pi : Rn→ R, i = 1, . . . ,a and q j : Rn→ R, j = 1, . . . ,b are polynomials. A mapping is semialgebraic
if its graph is semialgebraic.

For tame functions, we have the following proposition of the semismoothness [4, 33].
PROPOSITION 10. Let ξ : Rn→ Rm be a locally Lipschitz continuous mapping.
(i) If ξ is tame, then ξ is semismooth.

(ii) If ξ is semialgebraic, then ξ is γ-order semismooth with some γ > 0.
Let Z be a finite dimensional Euclidean space. If the closed proper convex function f : Z → (−∞,∞]

is semialgebraic, then the Moreau-Yosida regularization ψ f (x) := min
z∈Z

{
f (z)+

1
2
‖z− x‖2

}
, x ∈Z of f is

semialgebraic. Moreover, since the graph of the corresponding proximal point mapping Pf is of the form

gphPf =

{
(x,z) ∈Z ×Z | f (z)+ 1

2
‖z− x‖2 = ψ f (x)

}
,

we know that Pf is also semialgebraic (cf. [33]). Since Pf is globally Lipschitz continuous, according to
Proposition 10 (ii), it yields that Pf is γ-order semismooth with some γ > 0. On the other hand, most unitarily
invariant closed proper convex functions f : X → (−∞,∞] in MOPs are semialgebraic. For example, it is
easy to verify that the indicator function δSn

+
(·) of the positive semidefinite (PSD) matrix cone and the matrix

Ky Fan k-norm ‖ ·‖(k) (the sum of k-largest singular values of matrices) are all semialgebraic. Therefore, we
know that the corresponding proximal point mapping Pf defined by (1) for MOPs are γ-order semismooth
with some γ > 0. However, sinceγ is not known explicitly, by this approach, we may not be able to show
the strong semismoothness of the spectral operator G = Pf even if the corresponding symmetric mapping g
is strongly semismooth.

6. Characterization of Clarke’s generalized Jacobian. Let X ∈ N be given. In this section, we
assume that g is locally Lipschitz continuous near σ = σ(X) and directionally differentiable at σ . Therefore,
from Theorem 5 and [19, Theorem 3 and Remark 1], we know that the corresponding spectral operator G
is locally Lipschitz continuous near X and directionally differentiable at X . Furthermore, we define the
function d : Rm→ Rm by

(55) d(h) := g(σ +h)−g(σ)−g′(σ ;h), h ∈ Rm.

Consequently, we know that the function d is also a mixed symmetric mapping, with respect to P|a1|× . . .×
P|ar |×±P|b|, over V = R|a1|× . . .×R|ar |×R|b|. Again, since g is locally Lipschitz continuous near σ and
directionally differentiable at σ , we know from [62] that g is B-differentiable at σ . Thus, d is differentiable at
zero with the derivative d′(0) = 0. Furthermore, if we assume that the function d is also strictly differentiable
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at zero, then we have

(56) lim
w,w′→0
w6=w′

d(w)−d(w′)
‖w−w′‖

= 0.

By using the mixed symmetric property of d, one can easily obtain the following results. We omit the details
of the proof here.

LEMMA 11. Let d : Rm → Rm be the function given by (55). Suppose that d is strictly differentiable
at zero. Let {wk} be a given sequence in Rm converging to zero. Then, if there exist i, j ∈ al for some
l ∈ {1, . . . ,r} or i, j ∈ b such that wk

i 6= wk
j for all k sufficiently large, then

(57) lim
k→∞

di(wk)−d j(wk)

wk
i −wk

j
= 0;

if there exist i, j ∈ b such that wk
i +wk

j 6= 0 for all k sufficiently large, then

(58) lim
k→∞

di(wk)+d j(wk)

wk
i +wk

j
= 0;

and if there exists i ∈ b such that wk
i 6= 0 for all k sufficiently large, then

(59) lim
k→∞

di(wk)

wk
i

= 0.

Again, since the spectral operator G is locally Lipschitz continuous near X , we know that Ψ = G′(X ; ·)
is globally Lipschitz continuous (cf. [60, Theorem A.2] or [58, Lemma 2.2]). Therefore, ∂BΨ(0) and ∂Ψ(0)
are well-defined. Furthermore, we have the following characterization of the B-subdifferential and Clarke’s
subdifferential of the spectral operator G at X .

THEOREM 12. Suppose that the given X ∈ N has the decomposition (5). Suppose that there exists
an open neighborhood B ⊆ Rm of σ in σ̂N such that g is differentiable at σ ∈B if and only if g′(σ ; ·) is
differentiable at σ−σ . Assume further that the function d :Rm→Rm defined by (55) is strictly differentiable
at zero. Then, we have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0).

Proof. We only need to prove the result for the B-subdifferentials. Let V be any element of ∂BG(X).
Then, there exists a sequence {Xk} in DG converging to X such that V = lim

k→∞
G′(Xk). Now we present two

preparatory steps before proving that V ∈ ∂BΨ(0).
(a) For each Xk, let Uk ∈Om and V k ∈On be the matrices such that

Xk =Uk[Σ(Xk) 0](V k)T.

For each Xk, denote σ k = σ(Xk). Then, we know from [19, Theorem 4] that for each k, σ k ∈ Dg. For k
sufficiently large, we know from [19, Lemma 1] that for each k, GS is twice continuously differentiable at
X . Thus, lim

k→∞
G′S(X

k) = G′S(X). Hence, we have for any H ∈ Vm×n,

(60) lim
k→∞

G′S(X
k)H = G′S(X)H =U

[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1) F

0 ◦UTHV 2

]
VT

.
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Moreover, we know that the mapping GR = G−GS is also differentiable at each Xk for k sufficiently large.
Therefore, we have

(61) V = lim
k→∞

G′(Xk) = G′S(X)+ lim
k→∞

G′R(X
k).

From the continuity of the singular value function σ(·), by taking a subsequence if necessary, we assume
that for each Xk and l, l′ ∈ {1, . . . ,r}, σi(Xk) > 0, σi(Xk) 6= σ j(Xk) for any i ∈ al , j ∈ al′ and l 6= l′. Since
{Uk} and {V k} are uniformly bounded, by taking subsequences if necessary, we may also assume that
{Uk} and {V k} converge and denote the limits by U∞ ∈ Om and V ∞ ∈ On, respectively. It is clear that
(U∞,V ∞) ∈ Om,n(X). Therefore, we know from [20, Proposition 5] that there exist Ql ∈ O|al |, l = 1, . . . ,r,
Q′ ∈ O|b| and Q′′ ∈ On−|a| such that U∞ = UM and V ∞ = V N, where M = Diag(Q1, . . . ,Qr,Q′) ∈ Om and
N = Diag(Q1, . . . ,Qr,Q′′) ∈ On. Let H ∈ Vm×n be arbitrarily given. For each k, denote H̃k := (Uk)THV k.
Since {(Uk,V k)} ∈ Om,n(Xk) converges to (U∞,V ∞) ∈ Om,n(X), we know that limk→∞H̃k = (U∞)THV ∞.
For notational simplicity, we denote H̃ :=UTHV and Ĥ := (U∞)THV ∞.

For k sufficiently large, we know from [20, Proposition 8] and [19, (38) in Theorem 4] that for any
H ∈ Vm×n, G′R(X

k)H =Uk∆k(V k)T with

∆
k :=

[
Diag

(
∆k

1, . . . ,∆
k
r
)

0
0 ∆k

r+1

]
∈ Vm×n,

where for each k, ∆k
l = (E1(σ

k))alal ◦S(H̃k
alal

)+Diag((C (σ)diag(S(H̃k)))al ), l = 1, . . . ,r,

∆
k
r+1 =

[
(E1(σ

k))bb ◦S(H̃k
bb)+Diag((C (σ k)diag(S(H̃k)))b)+(E2(σ

k))bb ◦T (H̃k
bb) (F (σ k))bc ◦ H̃k

bc

]
and E1(σ

k), E2(σ
k), F (σ k) and C (σ k) are defined for σ k by [19, (34)–(36)], respectively. Again, since

{Uk} and {V k} are uniformly bounded, we know that

(62) lim
k→∞

G′R(X
k)H =U∞( lim

k→∞
∆

k)(V ∞)T =UM( lim
k→∞

∆
k)NTVT

.

(b) For each k, denote wk := σ k−σ ∈ Rm. Moreover, for each k, we can define W k
l := QlDiag(wk

al
)QT

l ∈
S|al |, l = 1, . . . ,r and W k

r+1 := Q′[Diag(wk
b) 0]Q′′T ∈ V|b|×(n−|a|). Therefore, it is clear that for each k,

W k := (W k
1 , . . . ,W

k
l ,W

k
r+1) ∈ W and κ(W k) = wk, where W = S|a1|× . . .× S|ar |×V|b|×(n−|a|). Moreover,

since limk→∞σ k = σ , we know that limk→∞W k = 0 in W . From the assumption, we know that φ = g′(σ ; ·)
and d(·) are differentiable at each wk and φ ′(wk)= g′(σ k)−d′(wk) for all wk. Since d is strictly differentiable
at zero, it can be checked easily that limk→∞ d′(wk) = d′(0) = 0. By taking a subsequence if necessary, we
may assume that limk→∞ g′(σ k) exists. Therefore, we have

(63) lim
k→∞

φ
′(wk) = lim

k→∞
g′(σ k).

Since Φ is the spectral operator with respect to the mixed symmetric mapping φ , from [19, Theorem 7] we
know that Φ is differentiable at W ∈W if and only if φ is differentiable at κ(W ). Recall that Φ̂ : W →Vm×n

is defined by (31). Then, for k sufficiently large, Φ̂ is differentiable at W k. Moreover, for each k, we define
the matrix Ck ∈ Vm×n by

Ck =U

[
Diag

(
W k

1 , . . . ,W
k
r
)

0

0 W k
r+1

]
VT

.
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Then, we know that for k sufficiently large, Ψ is differentiable at Ck and limk→∞Ck = 0 in Vm×n. Thus, we
know from (30) that for each k,

Ψ
′(Ck)H = G′S(X)H +U

[
Φ̂
′(W k)D(H)

]
VT ∀ H ∈ Vm×n,

where D(H) =
(

S(H̃a1a1), . . . ,S(H̃arar), H̃bā

)
with H̃ = UTHV and Φ̂′(W k)D(H) can be derived from [19,

Theorem 7]. By comparing with (61) and (62), we know that V ∈ ∂BΨ(0) if we can show that

(64) lim
k→∞

∆
k = lim

k→∞
MT

Φ̂
′(W k)D(H)N.

To show that (64) holds, we consider eight different cases. For any (i, j) ∈ {1, . . . ,m}× {1, . . . ,n},
consider the following cases.

Case 1: i = j. It is easy to check that for each k,

(∆k)ii = (g′(σ k)hk)i and
(

MT
Φ̂
′(W k)D(H)N

)
ii
= (φ ′(wk)ĥ)i,

where hk =
(

diag(S(H̃k
aa)),diag(H̃k

bb)
)

and ĥ =
(

diag(S(Ĥaa)),diag(Ĥbb)
)

. Therefore, we know from (63)
that

lim
k→∞

(∆k)ii = lim
k→∞

(g′(σ k)hk)i = lim
k→∞

(φ ′(wk)ĥ)i = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
ii
.

Case 2: i, j ∈ al for some l ∈ {1, . . . ,r}, i 6= j and σ k
i 6= σ k

j for k sufficiently large. We obtain that for k
sufficiently large,

(∆k)i j =
gi(σ

k)−g j(σ
k)

σ k
i −σ k

j
(S(H̃k

alal
))i j,

(
MT

Φ̂
′(W k)D(H)N

)
i j
=

φi(wk)−φ j(wk)

wk
i −wk

j
(S(Ĥalal ))i j.

Since σ i = σ j and gi(σ) = g j(σ), we know that for k sufficiently large,

gi(σ
k)−g j(σ

k)

σ k
i −σ k

j
=

gi(σ +wk)−g j(σ +wk)

wk
i −wk

j
=

gi(σ +wk)−gi(σ)+g j(σ)−g j(σ +wk)

wk
i −wk

j

=
di(wk)−d j(wk)

wk
i −wk

j
+

φi(wk)−φ j(wk)

wk
i −wk

j
.(65)

Therefore, we know from (57) that

lim
k→∞

gi(σ
k)−g j(σ

k)

σ k
i −σ k

j
(S(H̃k

alal
))i j = lim

k→∞

φi(wk)−φ j(wk)

wk
i −wk

j
(S(Ĥalal ))i j,

which implies lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Case 3: i, j ∈ al for some l ∈ {1, . . . ,r}, i 6= j and σ k
i = σ k

j for k sufficiently large. We have for k
sufficiently large,

(∆k)i j =
(
(g′(σ k))ii− (g′(σ k))i j

)
(S(H̃k

alal
))i j,(

MT
Φ̂
′(W k)D(H)N

)
i j
=
(
(φ ′(wk))ii− (φ ′(wk))i j

)
(S(Ĥalal ))i j.
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Therefore, we obtain from (63) that

lim
k→∞

(
(g′(σ k))ii− (g′(σ k))i j

)
(S(H̃k

alal
))i j = lim

k→∞

(
(φ ′(wk))ii− (φ ′(wk))i j

)
(S(Ĥalal ))i j.

Thus, we have lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Case 4: i, j ∈ b, i 6= j and σ k
i = σ k

j > 0 for k sufficiently large. We have for k large,

(∆k)i j =
(
(g′(σ k))ii− (g′(σ k))i j

)
(S(H̃k

bb))i j +
gi(σ

k)+g j(σ
k)

σ k
i +σ k

j
(T (H̃k

bb))i j,

(
MT

Φ̂
′(W k)D(H)N

)
i j
=
(
(φ ′(wk))ii− (φ ′(wk))i j

)
(S(Ĥbb))i j +

φi(wk)+φ j(wk)

wk
i +wk

j
(T (Ĥbb))i j.

Since σ i = σ j = 0 and gi(σ) = g j(σ) = 0, we get

gi(σ
k)+g j(σ

k)

σ k
i +σ k

j
=

di(wk)+d j(wk)

wk
i +wk

j
+

φi(wk)+φ j(wk)

wk
i +wk

j
.(66)

Therefore, we know from (58) and (63) that lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Case 5: i, j ∈ b, i 6= j and σ k
i 6= σ k

j for k sufficiently large. For large k, we have

(∆k)i j =
gi(σ

k)−g j(σ
k)

σ k
i −σ k

j
(S(H̃k

bb))i j +
gi(σ

k)+g j(σ
k)

σ k
i +σ k

j
(T (H̃k

bb))i j,

(
MT

Φ̂
′(W k)D(H)N

)
i j
=

φi(wk)−φ j(wk)

wk
i −wk

j
(S(Ĥbb))i j +

φi(wk)+φ j(wk)

wk
i +wk

j
(T (Ĥbb))i j.

Thus, by (65) and (66), we know from (57) and (58) that lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Case 6: i, j ∈ b, i 6= j and σ k
i = σ k

j = 0 for k sufficiently large. We know that for k sufficiently large,

(∆k)i j =
(
(g′(σ k))ii− (g′(σ k))i j

)
(S(H̃k

bb))i j +(g′(σ k))ii(T (H̃k
bb))i j,(

MT
Φ̂
′(W k)D(H)N

)
i j
=
(
(φ ′(wk))ii− (φ ′(wk))i j

)
(S(Ĥbb))i j +(φ ′(wk))ii(T (Ĥbb))i j.

Again, we obtain from (63) that lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Case 7: i ∈ b, j ∈ c and σ k
i > 0 for k sufficiently large. We have for k sufficiently large,

(∆k)i j =
gi(σ

k)

σ k
i

(H̃k
bc)i j,

(
MT

Φ̂
′(W k)D(H)N

)
i j
=

φi(wk)

wk
i

(Ĥbc)i j.

Since σ i = 0 and gi(σ) = 0, we get

gi(σ
k)

σ k
i

=
gi(σ +wk)−gi(σ)

wk
i

=
di(wk)

wk
i

+
φi(wk)

wk
i

.
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Therefore, by (59), we obtain that lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Case 8: i ∈ b, j ∈ c and σ k
i = 0 for k sufficiently large. We have for k sufficiently large,

(∆k)i j = (g′(σ k))ii(H̃k
bc)i j,

(
MT

Φ̂
′(W k)D(H)N

)
i j
= (φ ′(wk))ii(Ĥbc)i j.

Therefore, by (63), we obtain that lim
k→∞

(∆k)i j = lim
k→∞

(
MT

Φ̂
′(W k)D(H)N

)
i j

.

Thus, we know that (64) holds. Therefore, by (61) and (62), we obtain that V ∈ ∂BΨ(0).

Conversely, suppose that V ∈ ∂BΨ(0) is arbitrarily chosen. Then, from the definition of ∂BΨ(0), we
know that there exists a sequence {Ck} ⊆ Vm×n converging to zero such that Ψ is differentiable at each Ck

and V = limk→∞Ψ′(Ck). For each k, we know from (30) that Ψ is differentiable at Ck if and only if the
spectral operator Φ : W →W is differentiable at W k := D(Ck) =

(
S(C̃k

a1a1
), . . . ,S(C̃k

arar),C̃
k
bā

)
∈W , where

for each k, C̃k =UTCkV . Moreover, for each k, we have the following decompositions

S(C̃k
alal

) = Qk
l Λ(S(C̃k

alal
))(Qk

l )
T, l = 1, . . . ,r, C̃k

bā = Q′k
[
Σ(C̃k

bā) 0
]
(Q′′k)T,

where Qk
l ∈O|al |, Q′k ∈O|b| and Q′′k ∈On−|a|. For each k, let

wk :=
(

λ (S(C̃k
a1a1

)), . . . ,λ (S(C̃k
arar)),σ(C̃k

bā)
)
∈ Rm,

Mk := Diag
(

Qk
1, . . . ,Q

k
r ,Q

′k
)
∈Om, Nk := Diag

(
Qk

1, . . . ,Q
k
r ,Q

′′k
)
∈On.

Since {Mk} and {Nk} are uniformly bounded, by taking subsequences if necessary, we know that there exist
Ql ∈O|al |, Q′ ∈O|b| and Q′′ ∈On−|b| such that

lim
k→∞

Mk = M := Diag
(

Q1, . . . ,Qr,Q′
)

lim
k→∞

Nk = N := Diag
(

Q1, . . . ,Qr,Q′′
)
.

For each k, by [19, Theorem 7], we know that for any H ∈ Vm×n,

(67) Ψ
′(Ck)H =U

[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1) F

0 ◦UTHV 2

]
VT

+U
[
Φ̂
′(W k)D(H)

]
VT

,

where D(H) =
(

S(H̃a1a1), . . . ,S(H̃arar), H̃bā

)
with H̃ =UTHV . Let Rk := Φ′k(W

k)D(H), k = 1, . . . ,r+1.

For each k, define σ k := σ +wk ∈Rm. Since limk→∞wk = 0 and for each k, wk
i ≥ 0 for all i ∈ b, we have

σ k ≥ 0 for k sufficiently large. Therefore, for k sufficiently large, we are able to define

Xk :=UM[Diag(σ k) 0]NTVT ∈ Vm×n.

For simplicity, denote U = UM ∈ Om and V = V N ∈ On. It is clear that the sequence {Xk} converges to
X . From the assumption, we know that g is differentiable at each σ k and d is differentiable at each wk with
g′(σ k) = φ ′(wk)+ d′(wk) for all σ k. Therefore, by [19, Theorem 4], we know that G is differentiable at
each Xk. By taking subsequences if necessary, we may assume that limk→∞ φ ′(wk) exists. Thus, since d is
strictly differentiable at zero, we know that (63) holds. Since the derivative formula (14) is independent of
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(U,V ) ∈Om,n(X), we know from [19, (38) in Theorem 4] that for any H ∈ Vm×n,

G′(Xk)H =U
[
E

0
1 ◦S(UTHV 1)+E

0
2 ◦T (UTHV 1) F

0 ◦UTHV 2

]
VT

+U

[
Diag

(
Q1Ωk

1QT
1 , . . . ,QrΩ

k
rQT

r
)

0

0 Q′Ωk
r+1Q′′T

]
VT

,(68)

where for each k, Ωk
l = (El(σ

k))alal ◦S(Ĥalal )+Diag((C (σ k)diag(S(Ĥ)))al ), l = 1, . . . ,r and

Ω
k
r+1 =

[
(E1(σ

k))bb ◦S(Ĥbb)+Diag((C (σ k)diag(S(Ĥ)))b)+(E2(σ
k))bb ◦T (Ĥbb) (F2(σ

k))bc ◦ Ĥbc

]
,

E1(σ
k), E2(σ

k) and F (σ k) are defined by [19, (34)–(36)], respectively and Ĥ := MTUTHV N = MTH̃N.
Therefore, by comparing (67) and (68), we know that the inclusion V ∈ ∂BG(X) follows if we can show that

(69) lim
k→∞

(
Rk

1, . . . ,R
k
r ,R

k
r+1

)
= lim

k→∞

(
Q1Ω

k
1QT

1 , . . . ,QrΩ
k
rQT

r ,Q
′
Ω

k
r+1Q′′T

)
.

Similar to the proofs for Cases 1-8 in the first part, by using (63) and (57)–(59) in Lemma 11, we can show
that (69) holds. For simplicity, we omit the details here. Therefore, we obtain that ∂BG(X) = ∂BΨ(0). This
completes the proof.

7. Extensions. In this section, we consider the extensions of the related results obtained in previous
sections for the case that X ≡ Vm×n to the general spectral operators defined on the vector space X given
by (2), i.e., the Cartesian product of several real or complex matrices. One special class of this nature are the
smoothing spectral operators.

7.1. The spectral operators defined on the general matrix spaces. In fact, the corresponding prop-
erties of the general spectral operators defined on the vector space X given by (2), including locally Lip-
schitzian continuity, ρ-order B-differentiability, ρ-order G-semismoothness and the characterization of the
Clarke generalized Jacobian, can be studied in the same fashion as those in Sections 4–6. For simplicity, we
omit the proofs here. For readers who are interested in seeking the details, we refer them to [18].

Let X and Y be the vector spaces defined by (2) and (3), respectively. Suppose that N is a given
nonempty open set in X . Let G : X →X be the spectral operator defined in Definition 2 with respect to
g : Y →Y , which is mixed symmetric on an open set κ̂N in Y containing κN := {κ(X) | X ∈N }. For the
given X =(X1, . . . ,X s0 ,X s0+1, . . . ,X s)∈X , recall that κ(X)=

(
λ (X1), . . . ,λ (X s0),σ(X s0+1), . . . ,σ(X s)

)
∈

Y . We first consider the locally Lipschitzian continuity of spectral operators of matrices.
THEOREM 13. Let X ∈N be given. The spectral operator G is locally Lipschitz continuous near X if

and only if the corresponding mixed symmetric function g is locally Lipschitz continuous near κ(X).
For the ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1) of the general spectral operators, we have the

following theorem.
THEOREM 14. Let X ∈N and 0 < ρ ≤ 1 be given. Then, we have the following results.
(i) If g is locally Lipschitz continuous near κ(X) and ρ-order B-differentiable at κ(X), then G is

ρ-order B-differentiable at X.
(ii) If G is ρ-order B-differentiable at X, then g is ρ-order B-differentiable at κ(X).
Suppose that g is locally Lipschitz continuous near κ(X). Then we know from Theorem 13 that the cor-

responding spectral operator G is also locally Lipschitz continuous near X . We have the following theorem
on the G-semismoothness of spectral operators.
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THEOREM 15. Let X ∈N be given. Suppose that 0 < ρ ≤ 1. Then, the spectral operator G is ρ-order
G-semismooth at X if and only if g is ρ-order G-semismooth at κ(X).

Finally, we assume that g is locally Lipschitz continuous near κ = κ(X) and directionally differentiable
at κ . From Theorem 13, [19, Theorems 6 and Remark 1], the spectral operator G is also locally Lips-
chitz continuous near X and directionally differentiable at X . Then, we have the following results on the
characterization of the Clarke generalized Jacobian of G.

THEOREM 16. Let X ∈N be given. Suppose that there exists an open neighborhood B ⊆ Y of κ in
κ̂N such that g is differentiable at κ ∈B if and only if φ = g′(κ; ·) is differentiable at κ−κ . Assume that
the function d : Y → Y defined by

d(h) = g(κ +h)−g(κ)−g′(κ;h), h ∈ Y

is strictly differentiable at zero. Then, we have

∂BG(X) = ∂BΨ(0) and ∂G(X) = ∂Ψ(0),

where Ψ := G′(X ; ·) : X →X is the directional derivative of G at X.

7.2. The smoothing spectral operators. In this subsection, we consider the smoothing spectral oper-
ators of matrices. For simplicity, we mainly focus on the case X ≡ R×Vm×n. The corresponding results
can be obtained as special cases for the spectral operators defined on the general matrix space X given by
(2).

Let N be a given nonempty open set in Vm×n. Suppose that g : Rm → Rm is mixed symmetric with
respect to P ≡ ±Pm on an open set σ̂N in Rm containing σN = {σ(X) | X ∈N }. Let X ∈N be given.
Assume that g is Lipschitz continuous near σ = σ(X). Suppose there exists a mapping θ : R++× σ̂N →Rm

such that for any x ∈ σ̂N and (ω,z) ∈ R++× σ̂N close to (0,x), θ is continuously differentiable around
(ω,z) unless ω = 0 and θ(ω,z)→ g(x) as (ω,z)→ (0,x). For convenience, for any x ∈ σ̂N , we always
define θ(0,x) = g(x) and θ(ω,x) = θ(−ω,x) for any ω < 0. Furthermore, we assume that for any fixed
ω close to 0, θ(ω, ·) is also mixed symmetric on σ̂N . Then, the mapping θ is said to be a smoothing
approximation of g on σ̂N . For a given mixed symmetric mapping g, there are many ways to construct such
a smoothing approximation. For example, as mentioned in Section 3, the Steklov averaged function defined
by (27) is a smoothing approximation of the mixed symmetric mapping g.

Define π : R× σ̂N → R×Rm by π(ω,x) = (ω,θ(ω,x)), (ω,x) ∈ R× σ̂N . Then, it is easy to verify
that π is mixed symmetric (Definition 1) over R×Rm with respect to±P1×±Pm. Note that R≡V1×1. The
spectral operator Π : V1×1×Vm×n→ V1×1×Vm×n defined with respect to π takes the form:

Π(ω,X) = (ω,Θ(ω,X)), (ω,X) ∈ V1×1×N ,

where Θ(ω,X) := U
[
Diag

(
θ(ω,σ(X))

)
0
]
VT and (U,V ) ∈ Om,n(X). We call Θ : V1×1×N → Vm×n

the smoothing spectral operator of G with respect to θ . It follows from [19, Theorem 1] that Θ is well-
defined. Moreover, since θ is continuously differentiable at any (ω,z) ∈ R× σ̂N with ω close to 0, we
know from [19, Theorem 7] that Θ is also continuously differentiable at any (ω,X) ∈ R×N , and the
corresponding derivative formula can be found in [19, Theorem 7]. For the case ω = 0, the continuity
and Hadamard directional differentiability of Θ follows directly from [19, Theorem 6]. Next, we study the
locally Lipschitz continuity, ρ-order B-differentiable (0 < ρ ≤ 1), ρ-order G-semismooth (0 < ρ ≤ 1), and
the characterization of the Clarke generalized Jacobian of Θ at (0,X). The first property we consider is the
local Lipschitzian continuity of Θ near (0,X).

THEOREM 17. Let X ∈ N be given. Suppose that the smoothing approximation θ of g is locally
Lipschitz continuous near (0,σ). Then, the smoothing spectral operator Θ with respect to θ is locally
Lipschitz continuous near (0,X).
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The following theorem is on the ρ-order B-differentiability (0 < ρ ≤ 1) of the smoothing spectral oper-
ator Θ at (0,X).

THEOREM 18. Let X ∈N and 0 < ρ ≤ 1 be given. If the smoothing approximation θ of g is locally
Lipschitz continuous near (0,σ) and ρ-order B-differentiable at (0,σ), then the smoothing spectral operator
Θ is ρ-order B-differentiable at (0,X).

Suppose that the smoothing approximation θ of g is locally Lipschitz continuous near (0,σ(X)). Then,
by Theorem 17, the smoothing spectral operator Θ is also locally Lipschitz continuous near X . Moreover,
we have the following results on the G-semismoothness of the smoothing spectral operator Θ at (0,X).

THEOREM 19. Let X ∈N be given. Suppose that the smoothing approximation θ of g is ρ-order G-
semismooth (0 < ρ ≤ 1) at (0,σ(X)). Then, the corresponding smoothing spectral operator Θ is ρ-order
G-semismooth at (0,X).

Finally, suppose that the smoothing approximation θ of g is locally Lipschitz continuous near (0,σ)
and directionally differentiable at (0,σ). It then follows from Theorem 17 and [19, Theorems 3] that the
smoothing spectral operator Θ is also locally Lipschitz continuous near (0,X) and directionally differentiable
at (0,X). Furthermore, we have the following results on the characterization of the Clarke generalized
Jacobian of Θ at (0,X).

THEOREM 20. Let X ∈N be given. Suppose that there exists an open neighborhood B ⊆ R× σ̂N of
(0,σ) such that θ is differentiable at (τ,σ) ∈B if and only if θ ′((0,σ);(·, ·)) is differentiable at (τ,σ−σ).
Assume that the function d : R×Rm→ Rm defined by

d(τ,h) := θ(τ,σ +h)−θ(0,σ)−θ
′((0,σ);τ,h), (τ,h) ∈ R×Rm

is strictly differentiable at zero. Then, we have

∂BΘ(0,X) = ∂BΨ(0,0) and ∂Θ(0,X) = ∂Ψ(0,0),

where Ψ := Θ′((0,X);(·, ·)) is the directional derivative of Θ at (0,X).

8. Conclusions. In this paper, we conduct extensive studies on spectral operators initiated in [19].
Several fundamental first and second-order properties of spectral operators, including the locally Lipschitz
continuity, ρ-order B(ouligand)-differentiability (0 < ρ ≤ 1), ρ-order G-semismooth (0 < ρ ≤ 1) and the
characterization of Clarke’s generalized Jacobian are systematically studied. These results, together with
the results obtained in [19] provide the necessary theoretical foundations for both the computational and
theoretical aspects of many applications. In particular, based on the recent exciting progress made in solving
large scale SDP problems, we believe that the properties of the spectral operators studied here, such as
the semismoothness and the characterization of Clarke’s generalized Jacobian, constitute the backbone for
future developments on both designing some efficient numerical methods for solving large-scale MOPs and
conducting second-order variational analysis of the general MOPs. The work done on spectral operators of
matrices is by no means complete. Due to the rapid advances in the applications of matrix optimization in
different fields, spectral operators of matrices will become even more important and many other properties
of spectral operators are waiting to be explored.
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